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ABSTRACT

ANALYSIS OF PLATE STRUCTURES BY A
DUAL FINITE ELEMENT METHOD

by

PETER KEI-KIN HO

A dual finite element method is developed for the analysis of the
stretching and bending of Tinearly elastic, orthotropic plates. This
finite element method is based on the duality that exists between the
problems of plate stretching and bending. Nodal displacements are the
unknowns in the stretching problem while nodal stress functions are
those in the bending problem. A variational principle is used in for-
mulating the governing system of equations. The boundary conditions
considered are those of stress, displacement, mixed, elastic, edge beam,
and strain in stretching; and those of displacement, stress, mixed, and
stress function in bending.

The finite element method is implemented into a computer system
named the PLANAL System, representing the Plate Analysis Language. The
PLANAL System is developed as a subsystem of the Integrated Civil Engi-
neering System (ICES). A user's manual and examples of application of
PLANAL are included. Results from the examples are in close agreement
with theoretical values.
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NOTATION

Important symbols used in this work are listed below. (The symbols
(S) and (B) refer to the stretching and bending problems, respectively.)

component along x-axis of oriented side i of triangu-
lar element; ‘

boundary term in potential energy (S);

boundary terms in complementary potential energy (B);
component along y-axis of oriented side i of triangu-
lar element;

flexural rigidities (B);

moduli of elasticity;

shear modulus;

plate thickness;

unit vectors along the coordinate axes;

coefficient matrix of system equations;

noncompatible curvatures in y- and x-directions, re-
spectively, associated with particular solution of
equilibrium equations, Eqs. (1.33), or particular
solution functions (B);

length of side i of boundary:

Eq. (1.50) (B);

components of stress couple vector at boundary (B);
stress couples (B);

initial stress couples due to thermal causes (B);
edge load vector;

components of stress resultant vector at boundary (S);
initial stress resultants due to thermal causes (S);
subscript associated with direction normal to the
boundary equations (B);

10
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generalized force matrix (S), or generalized rota-
tion matrix (B);

surface load vector;

potential energy density of surface load (S);

term in complementary potential energy (B);
superscript associated with particular solution of
equilibrium equations (B);

components of surface load;

transverse shear at boundary (B);

effective transverse shear (B);

transverse shears (B);

surface load intensity (B);

generalized force components at node 1 due to edge
loads of one triangular element (S);

generalized rotation components at node i due to edge
curvatures of one triangular element (B);

arclength of boundary or subscript referring thereto;
displacement matrix (S), or stress function matrix
(B);

displacement vector;

stress functions (B);

U and V at node i (B);

displacement components (S);

u and v at node i (S);

strain energy density of plate (S);

complementary strain energy density of plate (B);
deflection of plate (B);

Cartesian coordinates in middle plane of plate; axes
of elastic symmetry of orthotropic triangular ele-
ment.

linear components of strain (S);

generalized force components at node i due to thermal
effects in one triangular element (S);
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= generalized rotation components at node i due to

thermal effects in one triangular element (B);
Poisson ratios;

triangular coordinates;

potential energy of plate (S);

complementary potential energy expressions of plate
(B)s

thermal curvatures (B);

curvatures and twist of plate (B);

defined in Eq. (3.67) (B); and

superscript associated with the solution of the homo-
geneous equilibrium equations, i.e., with the portions
of the force quantities obaained through the stress
functions (B).




INTRODUCTION

The finite element method has been the subject of considerable re-
search effort in structural mechanics in recent years. In this method,
a continuum is represented by a number of elements joined together at a
number of nodes and along interelement boundaries. Variational princi-
ples or other methods may be applied in formulating a system of equa-
tions describing the problem. In a displacement method, displacement
quantities at the nodes are chosen as the unknowns of the equations;
whereas in a force method, force quantities are chosen.

Displacement methods are used extensively in the analysis of plate
and shell structures. In the problem of plate stretching where two dis-
placements per node are the unknowns, satisfactory results are reported
by Clough [2],t using triangular elements and linear displacement func-
tions. However, in the problem of plate bending where three displace-
ments per node are the unknowns, some difficulties seem to exist in
obtaining equally satisfactory results [1,2,3,26].

Force methods have, on the other hand, received relatively little
attention. A stress method has been presented by De Veubeke [7] and
mixed methods by Herrmann [12] and Prato [20]. FRecognizing the mathe-
matical duality that exists between the problems of stretching and
bending of plates, a finite element method in bending using stress func-
tions as unknowns is presented by Elias [9].

A stiffness method for the stretching problem with unknown in-plane
displacements can be interpreted as the dual of a flexibility method for
the bending problem with unknown stress functions. Similarly, a stiff-
ness method for the bending problem with an unknown deflection is the
dual of a flexibility method for the stretching problem with an unknown
Airy's stress function. Making use of this duality, a finite element

+ Numerals in brackets refer to items in the References.
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method using stress functions for the analysis of plate bending has the
same behavior as the method using in-plane displacements for the analy-
sis of plate stretching. The dual stress function method in plate ben-
ding has been shown by Elias [9,10] to produce satisfactory results.

It has been shown that the displacement method and the stress func-
tion method provide, respectively, lower and upper bounds to the deflec-
tion of a plate in bending [10]. This provides a method for evaluating
the deviation of finite element solutions from an exact solution.

In the bending problem, the stress function method involves two un-
knowns per node, whereas the displacement method involves three unknowns
per node. This results in a significant difference in computation
-effort in solving the governing system of equations.

In the present work, the dual finite element method (displacement
method in stretching and stress function method in bending) for the ana-
lysis of plate structures is presented in Chapters 1, 2, and 3. The
method is implemented into a computer system called the PLANAL System,
representing Plate Analysis Language. The system is developed as a sub-
system of the Integrated Civil Engineering System (ICES). Implementa-
tion logic, a user's manual, and examples of application of the PLANAL
System are presented in Chapters 4, 5, and 6. Documentation and listing
- of computer programs in the system are included in the appendices.




CHAPTER 1

DUALITY IN STRETCHING AND BENDING OF
ORTHOTROPIC PLATES

1.1. Introduction.

The basic equations and variational formulations of the problems of
stretching and bending of a plate are presented in this chapter. It may
be noted from the basic equations that duality exists between the two
problems.

Throughout this work, the right-handed Cartesian coordinate system
(x5 y, z) is adopted. The middle surface of the undeformed plate is
assumed to Tie in the xy-plane. Unit vectors along the x-, y-, and z-
axes are denoted by i, j, and k, respectively.t

Differentiation with respect to an independent variable is indi-
cated by a comma followed by that variable, for example,

_ of e o of

f,x TS ,S 95"

1.2. Basic Equations.

Presented in this section are the basic equations which describe
the stretching and bending of a thin plate under the smaff deflection
theory. These equations are reduced from the general equations in three
dimensions by neglecting the extensional stress normal to the plate and

+ Depending on the context, boldface types here denote vectors.
15
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adopting Kirchhoff's hypothesis concerning the deformation of normals to
the plate. The material of the plate is considered to be 1linearly elas-
tic and orthotropic (i.e., there are two orthogonal planes of elastic
symmetry normal to the plane of the plate).

~ Equilibrium Equations.
Consider a thin plate in equilibrium (Fig. 1.1) under a surface
load of vector intensity

p=pxi +pyj +pzk, (1.1)

and an edge load of vector intensity

Nn = Nnxl + Nnyl

The differential equations of equilibrium of the plate may be written in
the form

+ an . (1.2)

Nx,x * Nyx,y TPy =

i
(@)
w

fl
o
L%

+ .3
N + Ny p (1.3)

»Y y

. ny - Nyx =0,

Fig. 1.1. A thin plate in equilibrium under surface and edge loads.




and
Mx,x * Myx,y -Q =0,
M, +M, _-Q =0,
XY X YsYy QY 0
(1.4)
O x ¥ Qy’y +p, =0,
Xy Myx =0,
where Nx’ ny, Nyx’ Ny are the in-plane stress resultants, QX, Qy the
transverse shears, and M Mxy’ Myx’ My the stress couples (Fig. 1.2).
z

a differential

plate element

N

Fig. 1.2. Definition of stress resultants, transverse shears, and stress
couples acting on a differential plate element.
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It can be seen that the in-plane stress resultants in (1.3) are uncou-
pLed from the transverse shears and stress couples in (1.4). Thus,
(1.3) are the equilibrium equations of the stretching problem, and (1.4)
are those of the bending problem.

Stress-strain Relations.

The displacement vector of the plate is defined as

A

vu=ui+vj +twk. (1.5)

In the stretching problem, the generalized strains are Exs €y and

_ 1 _ 1 . .
gxy = ny = 77xy = ?ny which are defined by
= = = =1
e = U 4o e =V Cy = Syx = 2 (u’y + V,x)' (1.6)

The generalized strains are related to the generalized stresses (in-
plane stress resu]tants) through the sitress-stnain rnelations

. [ v 1
g, - € = - 0 N
X X Ex EX X
1 Yy 1
e = €° = -~ - = — 0 N (1.7)
E 9

y |y h y Ey y

e 0 0 ok N

Xy i 26 ] Xy

where e; and s; are initial strains due to temperature change, and h is

the thickness of the plate. The coefficient matrix in (1.7) is symmet-
rical; hence,

<

Y
E&'-=--. (1.8)
x y

The elastic constants are EX, Ey, Vs vy and G where EX, Ey are the

Young's moduli in the x-, y-directions, respectively; Vo vy Poisson's

ratios in the x-, y-directions, respectively; and G the shear modulus.
As a result of (1.8), there are only four distinet elastic constants in
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an orthotropic plate.t The inverse relations of (1.7) are

Ny Ee vy 0 e, - Ex’
h
N i v E E 0 g, - €° (1.9)
y 1 VyVy XX Y y
ny 0 0 2G6(1 - vxvy) €y

In the bending problem, the generalized strains are Xy2 Xy? and

Xxy = Xyx which are defined by

Y

Xg =7 W gy Xy = - W,yy’ Xy = Xyx = - w,xy' (1.10)

The stress couples and transverse shears can be expressed in terms of
two stress functions U and V in the form
1
M'—'V9 M=U’ = = o o + .
<y Ty T e By Ttz ) (1.11)

=1 - = .1
QX - 2 (V,Xy U’yy)’ Qy 2 (V,XX ~ U,yx).

The generalized stresses (the stress couples) are related to the general-
ized strains through the stress-stwain relations

MX - MX EX \)yEy 0 Xy
o h3 '
M_V - My = m \)XEX Ey 0 X)/ 3 (].12)
Mxy 0 0 ZG(]-vxvy) Xyy

where M; and M; are initial stress couples due to temperature change.

The inverse relations of (1.12) are

+ For solids in thnree dimensions, there are, in general, 21 dis-
tinct elastic constants in an anisotropic material, and nine distinct
elastic constants in an orthotropic material.
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><><
>~
i
xmkc
o
=
1
=
o

—
N

(1.13)

‘<><
=
w
‘<m‘ xc
m| —t
o
=
t
=

1
Xxy 0 0 6 M

If we define

(1.14)
E h

Dy = Ty -0, )"
where D and Dy are flexural rigidities of the plate, then (1.12) can be

expressed in the form

MX - M; DX vXDX 0 Xy
My - My = vyDy Dy 0 Xy (1.15)
3
Gh
Mx‘y i 0 0 5 | Xy y

Compatibility Equations.
In the stretehing problem, the compatibility equations are

Sy,x T Sxy.y T Xyz = O
Cyxox T EXoy Xyg = 0, (1.16)
= 0,

Xyz,x = %xz,y
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where
Xy =3 (Voo = u )
yz o 2 Yy Lyy’?
: (1.17)
Xxz = 7'(V,xx B u,yx)'
In the bending problem, the compatibility equations are
Xy,x = Xxy,y = O
(1.18)
Xyx,x ~ Xy T O

1.3. Stretching-Bending Duality.

As shown in the last section, the basic equations of the plate sep-
arate into two uncoupled systems: the stretching and the bending prob-
lems. There is a duality between the two systems of equations which is
a particular case of the static-geometry analogy of shell theory where
it is established, however, for zero surface load [8]. To include the
case of non-zero surface load, there is more than one way that the anal-
ogy may be made. For this purpose, the superscript * will denote quan-
tities associated with the homogeneous solution of the equilibrium equa-
tion.

For example, (1.3) in stretching with load terms deleted has the
same form as (1.18) in bending. On the other hand, (1.4) in bending
with load terms deleted has the same form as (1.16) in stretching.

It may be seen that the basic equations of the stretching problem
can be transformed into the basic equations of the bending problem, and
vice versa, by interchanging dual dependent variables and certain forms
of the elastic constants in the two problems. The stretching-bending
duality in the basic equations are tabulated in Table 1.1.1+ The dual

+ In Tables 1.1 and 1.2, the solution of the homogeneous equilib-
rium equations in bending is taken. Hence, the dependent variables with
superscript * are associated with the portions of the force quantities
obtained through the stress functions. See Reference [8] for a full
listing of duality in the basic equations.




Table 1.1. Stretching-Bending Duality in the Basic Equations.

Stretching Problem

Bending Problem

Equilibrium Equations (1.3):

Nx,x + Nyx’y =0,

+
NXYsX Ny,y

0.

Compatibility Equations (1.18):

* - =0
Xyx " Xxy,y © 2

-y =
Xyxx " Xx,y = 0

Compatibility Equations (1.16):

Sy " Exyy T Xyz T 0
€yx,x " Ex,y " Xxz = 0s
Xyz,x " Xxz,y = 0-

Equilibrium Equations (1.4):

Mex * Myx,y - & =0
% - * =
Moy x * M, - Q= 0,

% + O*
QX 2 X Qy oy

Stress-strain Relations (1.7):

Y

_ 1
€y " Ey T E;E'Nx ER Ny
v
X 1
g, ~ec®~F N + =N,
y vy Eyh X Eyh y
_1
Exy ~ 76 ny‘

Stress~strain Relations (1.15):

* - MO = *
MX Mx DXX + v Dxxy’

ME = MO = v D x* + D y*
v = My = v+ Dy
3
_ Gh
Mxy T T6 Xyt

Strain-displacement Re]at1ons
(1.6) (1.17):

X gx, y ’y,
e, =g _ = 1 (u +v )
Xy yx 2 ‘TLy WX’
Xyy = T - u )
yz 2 CUxy LYy
=tv,, -uy)
Xxz =7 YV, xx syx’”

Stress-stress function Relations
(1.11):

¥ =

2y’ My U,X’
M. =M _ =-X(Uu_ +V.)
Xy yX 2 'Ly X7
G =gV, U, )
X 2 WXy syy’?
=k (V. -U_)
Y 2 YVoxx 2YX
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Table 1.2. Stretching-Bending Duality in the Dependent
Variables and Elastic Constants.

Stretching Problem Bending Problem
Dependent Variables

u, v u, v

Px> Py “xx2 By

€y gxy’ ey M;, - M’)’zy, Mi

€n® Ens® Ss Mg - Mis> Ma

Nes Nyys Ny " Xy Xxyr XX

Ny Nny B ng” " Xsx

Xxz* Xyz - Q§” &
Elastic Constants

Ech, Eh, Gh - D;]a - D;'ﬂc.« - (G—?,?-)-]

Vyr Yy - Vs T Yy

dependent variables and the dual elastic constants are listed in
Table 1.2.t

1.4. Variational Formulation of the Stretching Problem in Terms
of the Displacements.

Consider a plate in equilibrium under surface load components

t See the previous footnote.

Py and
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py and edge load components Nnx and Nny (Fig. 1.3). The plate is con-

sidered to be linearly elastic and orthotropic. The strain energy den-
sity function W has the form

2 2

EEh £ £ 'V v
W= X ._l(.+_.y_+(_l(.+_l>€€
211-vxvy5 Ey Ex y EX X"y
2 . wor 4 o '
+ ZGheXy + Nxex + Nyey. (1.19)

N; and N; are initial stress resultants related to thermal strains s;

and e; through the relations

o Exh o ©
Ny = - 9,0, (el * ngy)
(1.20)
O - E,kh (o] + o )
Ny" ) T-vvy (ey VyEx

Fig. 1.3. Stretching of a plate under surface and edge loads.
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The potential energy due to surface load is j].P dA, where
P=-pu- PV (1.21)

The potential energy due to edge load is f B ds, where

B = - Nnxu - Nnyv' (1.22)

Therefore, the potential energy of the plate takes the form

1 =/ (W+ P)dA + fB ds. (1.23)

The above functional can be expressed in terms of the displacements
through strain-displacement relations.

The principle of stationary potential energy (sometimes known as
the principle of virtual displacements) requires the first variations of
the functional M with respect to the displacements to vanish. That is,
the displacements satisfy the variational equation

oIl = 0. (1.24)

1.5. Variational Formulation of the Bending Problem in Terms of
Stress Functions.

Consider a plate in equilibrium under a surface Toad component P,

an edge Toad component Qn’ and a stress couple at the boundary of vector
intensity

M, =M_i + Mn (1.25)

n nx yJ :

The plate is again considered to be linearly elastic and orthotropic.
The complementary strain energy density function W' has the form

2 2 2
M M v \V M
R LRl Cad LURE
h3 X Ey X y Xy
+ XM * XM, (1.26)
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‘x; and X; are thermal curvatures related to initial stress couples M;

and M; through the relations

o - [ [+
M3 D, (x5 + vxxy)
o ) (1.27)
= - ° 4 [
N y (xy vyxx)
The complementary potential energy due to edge load is f B'ds,
where
B' = - Mnxw,y + Mnyw,x - Qw. (1.28)

In a manner similar to that in the preceding section, the varia-
tional formulation in the form

8I'=0 (1.29)

with respect to the stress functions is obtained where

m =v/:/~w' dA + J#CB' ds. (1.30)

To arrive at a form of the variational formulation which is com-
pletely dual of the stretching problem, we proceed as follows.

The stress couples and transverse shear in (1.26) and (1.28) must
satisfy the equilibrium equations (1.4). This is accomplished by writ-
ing the general solution of (1.4) as the superposition of a particular
solution, denoted by the superscript *, of the corresponding homogeneous

system.
AL
My = W+ w5,
My ng + M (1.31)
Q, = Qb + Q%

= oP
Q Q¥ Qye
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From (1.11), the homogeneous solution is expressed in terms of the
stress functions, thus

% =
MX v

Y’
ME = U s
M, = - %—(u,y £V, (1.32)
Q=g (V- U )
Q; T %'(V,xx - U,yx)'

For convenience, the particular solution can be taken in the form

P -
M DX(K + vXKX),

X y
M§ = - DK+ v K,
ng =0, (1.33)
Qg N Mi,x - [ Dx(Ky * vxKx)] 2X?

fe)
o
1t

mP = - + .
Y Yy [ Dy (K VyKy)] R
in which two particwlar solution functions KX, Ky have been introduced.

Comparing (1.33) with (1.15), it can be seen that -Ky and -KX are curva-

ture quantities, and are indeed the curvatures in the x- and y-directions,
respectively.
Eqs. (1.33) satisfy the first two equations of (1.4) identically.

To satisfy the third equation of (1.4), K, and Ky must satisfy the dif-

ferential equation
[DX(Ky ¥ VXKX)] ot [Dy(KX + v k) ] yy = P (1.34)
Egs. (1.31), (1.32), and (1.33) are then substituted into (1.26),
(1.28), and (1.30). After use of Green's theorem in the area integral,

integration by parts in the boundary integral, and deletion of non-
varying terms, we obtain the functional
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mn" = .}()/kw" +P") dA + J#rB" ds, (.39

| where 2 2
| U + !
| W:i.dw - 1+_ Uy * Vo
| 3 = E U x ? 1
| h x y x y >
| I :
¥ ny 2 (1.36)
pt = Kx,xU + Ky,yv, (1.37)
B" = (w,ys - y,st)U + ( - W s + x,SKy)V. (1.38)
The principle of complementary potential energy (sometimes known as

the principle of virtual forces) requires the first variation of the
functional I1" with respect to the stress functions to vanish. That is,
the stress functions satisfy the variational equation

sM" = 0. (1.39)

To obtain the stress couples and curvatures in the bending problem,
we procede as follows.

First, an appropriate choice of KX and Ky is made (Section 1.6).
Then stress functions U and V are obtained from (1.39). The stress

* Mk andp P mP .
couples M¥, My Xy M My M xy are computed through (1.32) and

(1.33), and then summed as in (1.31). Curvatures X*» X§ are de-

*
s Xxy
fined in terms of M* M*, M* by means of the stress-strain relations

¥y’ Xy
(1.13). Curvatures Xy > Xy’ Xy are then obtained through
Xy = Xx = Kys
Xy = x; - Kes (1.40)
Xy = Xy

1.6. Determination of @ Particular Solution of the Bending Problem.

In solving the bending problem involving a surface load, it is
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necessary to determine a particular solution of the bending equilibrium
equation if the method of stretching-bending duality is to be applied.
A particular solution has to satisfy only the equilibrium equation and
it does not have to satisfy the boundary conditions of the problem under
consideration. It may be expected, however, that the closer a particu-
lar solution compares with the actual behavior, the more accurate is the
finite element solution to the problem.

A particular solution may be determined in the form of two particu-
lar solution functions KX and Ky, introduced in (1.33), which must sat-

isfy the governing differential equation (1.34). Several schemes by
which particular solutions may be determined are discussed below.

1. Determination of Ky and Ky by Fourier Series.

In this scheme, certain 1imi ations on the geometry and material
properties of the plate are adopted. Only rectangular plates are con-
sidered, and the plate material is assumed to be isotropic, so that Dx

= Dy =Dand v = vy = V. The surface load p, is assumed to be express-

ible in the form

P, = C4X T oyt Cys (1.41)
where C1s Cos and C3 are arbitrary constants.
Using the simplification of
KX = Ky = K, (1.42)

Eq. (1.34) becomes

where A is Laplace's operator.

Each term of the right-hand member in (1.41) is expressed as a
Fourier series by standard procedure [14]. If the center of the plate,
with dimensions 2a by 2b, is located at the origin of the coordinate
system (Fig. 1.4), then the terms of the right-hand member in (1.41) can
be expressed in the forms




be expressed in the forms

8.2 — ——
= 1 2 1 .;, mmx nm
e s — 2 X (1) i Sin T cos zp

T m=l
8c2b odd = . n+2n+]
_ 2 1 mmx .. nm
Coy = 2 %: r;(_]) my €0s 5= sin _El’ (1.44)

8e3 ) 2 1y X nmy
C3 > %;: :E:(‘O o COS 72— COS o
Substituting (1.44) into (1.43) finally leads to

KKy Ky

K= 0wy (1.45)

where

I\)7<
1
=
=N
=
M
—
3
>
| AR '
T
=3
N —
™
+
=
-3
N
| R |
(@]
(@]
wn
N
[3)
wn
—o
=
O
A"}

3= 3 2.2 N [ (m)z - (‘g'ﬂ CoS 73 €O 2p

2. Determination of Kx and Ky by Strips.

The stress couples and transverse shears of the particular solution
defined in (1.33) are the internal forces that would occur if the plate
is imagined to be comprised of two families of strips parallel to the
coordinate axes [9]. In this scheme, the load p, may be subdivided ar-

bitrarily between the two families of strips which behave independently
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of each other. The end conditions of the strips may be arbitrary. To
obtain a definite particular solution, the boundary conditions of the
strips and the portion of load P, carried by one family of strips must

be specified. If c(x, y) is the portion of load carried by the strips
parallel to the x-axis, (1.34) may be replaced by the two equations

[Dx (Ky ¥ VxKx)] xx - CPze

(1.47)
[Dy (K * VyKy)] yy - (- cle,.

Once KX and Ky are solved, the dual stretching problem is well defined.

As an example, consider the plate in Fig. 1.4 to be a homogeneous
and isotropic plate with a uniform load P, For simplicity, we take the

case of ¢ = 1, which means that only the family of strips in the x-
direction exists. Eq. (1.47) may be satisfied by letting

KX =0,
P, (1.48)
K = =
y,xx D
Y
b
0 X
b
a a

Fig. 1.4. Center of a rectangular plate located at the
origin of the coordinate system.
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By taking the strips as simply supported, we have

pz(x2 - a?)
A AR R

(1.49)

The particular solution in (1.48) and (1.49) is that of cylindrical

bending in the x-direction.

3. Determination of Kx and Ky by a Finite Element Method.

In this scheme, a particular solution is determined through a finite

element method using one unknown per node [10]. By letting
P-wmP =
M M.y M,
P -
MXy 0,

the equilibiium equations (1.4) becomes
AM tp, = 0.

A variational formulation of (1.51) has the form

S w2 mp] e

(1.50)

(1.51)

(1.52)

Eq. (1.52) may be used with an arbitrary subsidiary condition specifying

M at the boundary.




CHAPTER 2

FORMULATION BY THE FINITE ELEMENT METHOD

2.1. Introduction.

In the finite element method, the body under study is discretized
into elements and certain points in the body, known as nodes, are
selected for analysis. In the present work, the plate structure under
study is subdivided into triangular elements and the nodes are taken as
the vertices of the elements. For the stretching problem, the unknowns
are the two in-plane displacements at each node; for the bending prob-
lem, the unknowns are the two stress functions at each node.

The plate is taken to 1ie on the xy-plane of a right-handed Carte-
sian coordinate system. The material of the plate is considered to be
Tinearly elastic and orthotropic.

2.2. Triangular Coordinates.

The selection of suitable displacement expansions is simplified
considerably if one works with triangular coordinates E], gz, and g3
rather than with Cartesian coordinates [5,27]. Consider the triangle
shown in Fig. 2.1. The nodes of the triangle are numbered 1, 2, and 3
in the direction from x- to y-axis around the boundary,t and the side
opposite to node i is defined as side (i).

+ That is, the counter-clockwise direction is taken in a right-
handed coordinate system, while the clockwise direction is taken in a
left-handed coordinate system.

33
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2 (Xza ‘y2)

T (x5 ¥9)

Fig. 2.1. Coordinates of a triangular element.

Consider a point P inside the triangle. Line segments joining the
vertices and P divide the triangle into three subtriangles of area A],

AZ’ and A3 such that

A, + A, + A, =A, (2.1)

1 2 3

where A is the area of the triangle. The triangular coordinates of P
are defined as the dimensionfess quantities

A

_ i _
Ei=x s i=1,2,3. (2.2)

It can be seen from (2.1) that
1 tEyt &3 =1, (2.3)

If we take 12 and 13 as vectors oriented along sides (3) and (2),
respectively, and recall the definition of the vector cross product, the
area is given by

28 = (12x13) k,

which leads to




1 X Yy
28 = |1 Xo Yol (2.4)
1 X3 y3

where X; and y; are the Cartesian coordinates of node 1.

By applying (2.4) to each of the subtriangles, we obtain the rela-
tions between the triangular and Cartesian coordinates:
azy - bix +c;

£, = ’
1 28

i=1,2,3, (2.5)

where

o)}
—
I

= X3 Xps Dy T Y3t ¥hs € T Xy - Xg¥s,

dy = Xy = X35 Dy =y - y3s Gy T X3V - Xq¥3s (2.6)

=Xyt Xps b3 Ty - ¥y €37 X, - Xp¥ps
which are obtained by cyclic permutation of the subscripts according to
1-2-+3+1, etc. The quantities a; and bi can be considered as the compo-

nents of side (i) of the triangle taken as a vector and oriented in the
direction from x- to y-axis. It can be noted from (2.3), (2.5), and
(2.6) that

a, + a, + ag = 0,

b] + b2 + b3 =0, (2.7)

Cp ¥ cp ey

2A.

Solving (2.5) for x and y, we have the inverse relations

X = &qXp + EgXy X3,

Y =¥y Y, * Egyse (2.8)

Expressions for partial derivatives with respect to the Cartesian
coordinates can be readily established. For the first derivative of




f(g‘la gzs 53), we havet

i 9% X i %8s’ (2.9)
oE. a.
of _ of i _iof
oy :g: ) i oY :g: 2A 3 i'

By using two oblique coordinates, it can be shown that the integral
of f(g], €05 53) over the triangle is given by

£271 [ 715, ]
£ dA = 2 / / f de, | de,. (2.10)

2

The results of the first and second degree terms in 51 are listed

below:
/A‘gidA=%, i=1, 2,3,
f/A‘sf dA = 3, i=1, 2,3, (2.11)
_A ]
f/A‘ET.EJ-dA--TQ—, i4j

2.3. Stretching of a Triangular Plate.

An approximate solution of the problem of stretching of an element
in the form of a triangular plate is now obtained by applying a direct
method to the variational equation (1.24).

Consider a triangular plate element in equilibrium (Fig. 2.2) under

a surface load of vector intensity

P =pi + py{j, (2.12)

edge loads of vector intensity

+ Unless otherwise stated, index i or j under a summation sign indi-
cates that the summation is to be taken over the subscripts 1, 2, and 3.




N1= xii +Ny1.1, i=1, 2, 3, (2.13)
concentrated nodal forces
Fi= Feqd * 505 i=1,2,3, (2.14)

and a temperature change causing initial strains e; and e; which result
in initial stresses N; and N; given by (1.20).
The displacement vector

u(x, y) =ulx, y)i +vix, y)j (2.15)
describes the displacement of a point on the middle surface of the ele-
ment. The displacement components u and v are sought as £inear functions
of the coordinates, and the result is in the form

U= Equp * Egup * By
(2.16)

fl

VE BVt LoV, + EaUse

where us and v; are the displacement components at node 7.

Fig. 2.2. Loads and displacements of a triangular plate element.
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The strains are obtained by substituting (1.6) into (2.9), yielding

o2
1

X
a.v.
_ i'q
gy = :%: TN , | (2.17)’
a.u. - b.v
_ i i'i
2€xy B :%: 2A

It can be noted that the strains given above are constant throughout the
element, which is therefore called a constant strain element.
The total potential energy I1 will now be expressed in terms of the

nodal displacements.
The potential energy due to surface load, Eq. (1.21), takes the

/j[p dA = 2; ( P ity - Py].vi), (2.18)

Xi /f pxg’_x dA,
A
Pys / fA P, dA,

The potential energy due to edge load, Eq. (1.22), takes the form

'¢; B ds = Z <- Ry Us - Ry1v1.>, (2.20)

1

form

where

O
]

i=1,2, 3. (2.19)
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where

(&)
-

L¢[v1 :

j*i IJ.
Ry = JZ '{ Ny6q 45

1 [ .
1 J/~ ’ N ds
5 Yo xi%i 5

i=1,2,3. (2.21)
J#i 1J J#i IJ
Ryi=2f Ny4E ds; Z-‘-—f 5 dsss
j -0 NN

In (2.21), j refers to the two sides of the triangular plate intersec-
ting at node i. On each side j, lj is the Tength of the side and s; 1s

the arc-length oriented positively foward node 1i.
The potential energy due to concentrated nodal forces take the form

jﬁ; - Fi'ui ds = j;:(L inu1 - Fy1v]> (2.22)

The potential energy involving N; and N; in (1.19), after using
(2.17), takes the form

./()f < ) Z%: ( y1-v1.>, (2.23)

b. ‘
- _1 °
%i = 7& /-/;; Ny dAs
4
%;i '7/?/]:\ Ny dA.

The total potential energy ITI may now be written in the form

where

i=1,2,3. (2.24)

2 2
ZE::Z: {8AE E h ) [(bEUi) * (aéV1) B gé' ;X>b AsUsVs
“VxVy y X y X LINARAN
+ g—-a u; - b.v 2 _ P.+R.+9 .Ju. - (P .+ R + 0. .)v
AU = Dyvi)T - Py TR F 050Uy = WPyy + Ryg + 0y50vy
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In the case when Py and py are Linean in x and y, that is,

Py = Px151 * Pxob2 * Py3ése
(2.26)

the integrals in (2.19) may be expressed in terms of the nodal values

and p

Vi i=1, 2, 3. The resulting expressions are

Py

Xi (pxi * px] + Px2 * px3)’

O
il
3>\;
N
1
=
X
[
¥y
C
~—
¥y
—
Q.
=
]
il 2=
N

i=1,2,3. (2.27)

P

t
=
—
G
A
~—
oy
et
o
=
il
e
)
.
'CJ
-—l

Similarly, when N; and N; are Linear in x and y, the integrals in

(2.24) takes the form

b,
G f/ Z N;JEJ dA = g (Ngg + N2y + N92),
i=1,2,3, (2.28)

a. a.
1 1
= oe o = _ _1 ° 4 N°. + N°
i = " 7R /_/; D, Nygts A = - g (NG *+ NGy *+ Nig)s
]

where N; and N;1 are the values at node 1.

The variational equation (1.24) yields at each node k the two equa-

<
1

tions
oll -
36; =0, , k=1, 2, 3, (2.29a)
AL o, k=1, 2, 3.  (2.29b)
k
Finally, using (2.25) in (2.29), we obtain for the plate element
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the equilibrium equations

EE:'?K(TSJTJ'Y % [ Ebyby * 6(1 = Vv )a ey ]

[Ex\’xbka *6(1 - vx\’y)akbi] Vi% T Pk T Rak Okt Pk

k=1, 2, 3, (2.30a)

h
:%: EETT:5;5;7'§ [Ey“yakb + G(1 - vay)bkai]ui

+ [:Eyakai + G(1 'vay)bkbi] Vig = Pyk + Ryk + eyk + Fyk’
k=1, 2, 3. (2.30b)

The right-hand members of (2.30) can be considered as generalized nodal
forces at node k.

2.4. Assembly of the System of Equations.

The system of equations governing the stretching of a plate may now
be assembled. For convenience, matrix notation is used wherever appro-
priate. ‘

First, the equations for a typical element n of the plate are as-
sembled from (2.30). Letting

U, = fus ove}, 121,23, (2.31)

the nodal displacements are denoted by U], UZ’ and U3.T

Edge loads and concentrated nodal forces will be considered after
the equations for the entire plate have been assembled. Thus, the
right-hand members of (2.30) can be replaced by Pk’ where

Pk * %k

Py = . (2.32)
Pyk + eyk

+ Depending on the context, boldface types here denote matrices.
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By introducing element stiffness matrices kij’ (2.30) can now be

written in the form

— -

ki ki kg3 Y Py
Ky Ky kyy | (UL = (R Y, (2.33)
k3  kyp k33 | | Us P

- )

where kij are 2 x 2 submatrices and have the form

E.b.b. | E_v b.a.
2 gaa o XX g
) ) VeV g Vg i7d o)
L S .34
13 4R E v, a:b. 3 Ea.a.
SN A 20 N RV ~L13J 4 gh.b
]—vxvy LA ]-vxvy i

where i, j = 1, 2, 3. The numerical values of kij are element depen-

dent, i.e., they depend on the geometric and material properties of a
particular element.

Next, an illustration for a typica] subassembly of elements inci-
dent on a node is presented. Consider m elements with n nodes arranged
and named as shown in Fig. 2.3. Using superscripts to identify the ele-
ments and subscripts to identify the nodes, the equilibrium equations of
elements 1, 2, ..., m for node 1 are

Fig. 2.3. A typical subassembly of elements.




43

1 1 1
“1(1)”1 * "1(2) U, + "1(3) U; = le’
2 2 2 2
"1(1) U + "‘gs) us + "1(4) Uy = P1( L (2.35)

(m) y - plm)

(m) (m)
k U] + k Un + kq[2 5 1

11 In

Summing Eqs. (2.35) yields the equilibrium equations of the subas-
sembly of elements for node 1:

m
(2 w@)uy+ () W)y, + (kD)o WD),

5=
m
P (k](’:'1) " k]('r']‘)>un - J; P](j). (2.36)

Finally, the system of equations governing the plate can be assem-
bled by applying (2.36) to all of the n nodes of the plate. The nodes
are numbered, for convenience, consecutively from 1 through n. The dis-
placements of all the nodes is represented by

Uu = { U], UZ’ cee s U b (2.37)

Edge loads of an element are provided by the internal stresses from
an adjacent element. Edge loads along the common edge of two elements
are equal and opposite for the two elemerits. Therefore, for all inte-
rior edges, edge loads do not contribute to the total generalized nodal
forces and are not considered. Edge Toads along exterior edges are con-
sidered separately under stress boundary conditions (Section 3.4) and
are neglected here.

Concentrated nodal forces are not considered in (2.36) when the
system of equations are being assembled. They are added only after the
assembly has been completed so that they are considered only once. The

concentrated forces at node k are defined by

F,= {F F (2.38)

k xk yk }'

The assembled equations may be called, in the stretching problem, the
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global stiffness equations. In matrix notation, the system of equations
has the form
KU = P, (2.39)

Egs. (2.39) are called system equations in later discussion. In sub-
matrix form, it can be written as

Kii Ky o0 K| | Y 2

Koy Ko o Kpu| )Y ()R |
9 00090000 0CG9 000600 GE0SOS : : ' (2.40)

_Knl Kn2 U Knn Uh ph

The procedure for assembly of K and P follows from (2.33) and
(2.36):
1. Before assembly, K and P are null matrices.
2. Fon element m, with nodes Ny, Ny, Nyt

(1). Add kg?) computed by (2.34) to submatriix K in hypenr-

nyn;

j of K. Repeat for i, j =1, 2, 3.

(2). Add Pgm) computed by (2.32) to submatrix P, 4n hyper-row n,
i

row Ny, hyper-column n

of P. Repeat fon i =1, 2, 3.

Repeat step 2 for every element in the plate.

3. Forn node k, add F| to submatrix P, in hyper-row k of P.

Repeat for all nodes with concentrated forces.

It should be noted that the system of equations (2.39) is singular,
j.e., there exists a non-trivial solution U° to the system when P =0.
U° represents the nodal displacements of a rigid body motion. To fix
the plate against rigid-body motion, three independent displacement com-
ponents must be specified, e.g., the two displacements at a node and
the rotation about that node. These displacement components must be
specified in order to solve the system. Once these are specified, the
system is modified according to the algorithm described under displace-
ment boundary condition in stretching, and the resulting system becomes

non-singular.
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2.5. Formulation for the Bending Problem.

The results obtained in Sections 2.3 and 2.4 are directly applica-
ble to the dual bending problem by means of the correspondence in Table
1.2. Applying the stretching-bending duality to (2.30), and neglecting
ka and Fyk’ yields for the bending problem

ST Sa MU 't S S ] VAN TP
Ey» 4G |71 Ey 4G 171 xk xk xk

3
i Ah

3

k=1,2,3, (2.41a)

I

yk ~ Ryﬁ - 6yk

2.

Vyakbi ) bi2; - a2, . b,b. y
™ An E 4G |7i E 4G |

X X

k=1,2,3, (2.41b)

where ka, Pyk’ RXE, Ryﬁ, exk’ and eyk are dual of ka, Pyk’ ka, Ryk’

Byk> and eyk’ respectively, and may be expressed through equations dual

of (2.19), (2.21), and (2.24). The right-hand members of (2.41) can be
considered as generalized nodal rotations at node k.

Assembly of the system of equations governing the bending of a
plate is effected by applying the stretching-bending duality to the
equations in Section 2.4. After material properties dual of those in
bending have been replaced, the system of equations is assembled by the
same procedure as used in the stretching problem. The assembled equa~
tions may be called, in the bending problem, the global flexibility
equations. They are also called system equations in later discussion.

In computing the contribution of the particular solution functions
of one element to the generalized nodal rotations Pik and P}k at node k,

the equations

xk ~ ,/:/p: Ky ,xBk dA,
(2.42)
Pl f fA Ky 45k 9A




46

which are dual of (2.19) are used. However, in the schemes outlined in

Section 1.6, it is the particular solution functions K and Ky them-

selves that are computed. It is possible to use K, and Ky directly in

the computation of Pik and P&k' Using Green's theorem and (2.5), (2.24)

b
K

ﬁ//}; K, dA + fKngdy,
. akf/

= ak ) S, Ky o fkygkdy.

The total generalized nodal rotations Gik and G}k at node k due to the

becomes

i

xk

(2.43)

particular solution functions are obtained by superposition of Pik and
P}k’ respectively, of the elements having node k in common.

At an interior node, the 1ine integrals in (2.43) add up to zero
because & = 0 on the sides opposite to node k, and the integrands take
opposite values on sides common to the triangular elements. Therefore,

__— k
ka"zzﬂ A Ky dA,
. Z 2 //
Gyk = - -Z—A- A Ky dA,

where the summation extends over the elements having node k in common.

(2.44)

It can be shown that (2.44) can also be used at a boundary node.
Use of triangular coordinates shows that, for example,

f = gf; + E,f, + £5Fs, (2.45)

where fi is the nodal value of a function f at node i. It can be easily
proved that the integral of f over a triangular element takes the form

1
f/; fdA = 5 A(f) + f, + f3). (2.46)

(2.46) can be conveniently used in evaluating the integrals in (2.44).
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L L U L A A
N, +
yi N,
[y Y1

Fig. 3.1. Example showing values at the negative
and positive sides of a node.

Boundary conditions are then imposed so that definite values of those
constants can be determined. In a numerical method such as the one
presented in this work, boundary conditions are incorporated in the form
of modifications of the system equations.

The algorithms, or procedures, for modifications applicable to each
of the boundary conditions considered are presented in the remainder of
the chapter [9,19]. For clarity and conciseness, matrix notation is
used wherever appropriate. However, some of the matrix multiplications
indicated are not carried out explicitly in the computer implementation
for the sake of efficient computations. The matrices i, and O, stand

for the 2 x 2 unit and null matrices, respectively. The symbol " <"
means that the quantities on the left are to be replaced by the quanti-
ties resulting from the operations indicated on the right.

3.2. Dudlity in Boundary Conditions.

The stretching-bending duality applies to the boundary conditions
of the stretching and bending problems as well as to their basic equa-
tions. It can be seen that a wider class of boundary conditions appears
than is usually considered in each of the two problems.

The dual of stress boundary conditions in the stretching problem
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are displacement boundary conditions in which curvature quantities have
to be computed from the prescribed displacement quantities. The dual
of displacement boundary conditions in stretching are stress function
boundary conditions. For mixed boundary conditions in stretching, the
dual mixed boundary conditions requires the specification of a stress
function component and a curvature in the perpendicular direction.
Elastic in stretching is dual of edge beam in bending, whereas edge
beam in stretching is dual of elastic in bending. The dual of stress
boundary conditions in bending are strain boundary conditions in which
the extensional strain and the in-plane curvature of a boundary curve
are specified. The duality in boundary conditions and their correspon-
ding boundary values are listed in Table 3.1.

The coefficient matrix of the system equations is symmetric when
it was assembled originally. However, symmetry may be destroyed when
the equations are modified to incorporate certain boundary conditions.
For example, in strain boundary conditions, certain rows in the coeffi-
cient matrix are replaced without changing the corresponding columns.
In Table 3.1, an asterisk * in a boundary condition indicates that the
coefficient matrix becomes non-symmetric, in general, after modifica-
tions for the boundary condition.

3.3. Geometric Relations.

Certain geometric relations required in subsequent sections are
presented here.

Trans §ormation of Vectorns. A vector at a node may have its compo-
nents referenced to a local coordinate system x* and y* which is differ-
ent from the global coordinate system x and y. The local system at node
i may be defined by an angle ¢i measured from the x-axis to the x*-axis
(Fig. 3.2). For example, the displacement components

ut = {ur vr} (3.1)

in the local system may be transformed to those in the global system by
the relations




Table 3.1. Stretching-Bending Duality in Boundary Conditions.

Stretching Bending

Stress Displacement

N, Ny T Xys T Xy
Displacement Stress function

U, v U, v
Mixed Mixed

Uy Nq Ur" Xq
Elastic Edge beam*

5 7 Ko “ar Ky Ky U 0% Fe Fxy> Ty Tyy
Edge beam Elastic*

N, s Ny, EA, EI " Xyr T Xy fogo - f
Strain* Stress*

s> Xg Mn’ Qne

* Coefficient matrix becomes non-symmetric after modifications

for boundary condition.

= pl
U-i = R U?lks (3.2)

where the rotation matrix at node i is given by
cos ¢; - sin ¢,

i _
R = sin ¢ cos ¢, : (3.3)

Strain and Rotation of a Side. Consider 1line segment (i) of length
li connecting nodes i and i+1 represented by A and B, respectively, in
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X'k

\\\node i
4

Fig. 3.2. Transformation of vectors.

Fig. 3.3. The deformed segment is translated to position AB'. The
strain € and rotation W of the side are required. For small deforma-

tions, BB may be taken as the elongation, (CD)/li as the rotation, and

Fig. 3.3. Computation of strain and rotation of a side.
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angle B'BE as 8- The orientation angle ¢ of the side is measured

from the x-axis to the outward normal =n of the side. Since

BE = ujuq = Uy EB" = Vi4 = Vs
and sin ei = CO0S ¢1, cos 61 = - sin ¢i’
it can be shown that €5 and w; are given by
e;ls = - (ui+] - ui) sin ¢ + (V1+1 - Vi) cos 9,5 (3.4)
wili = - (ui+] - ui) cos ¢; - (Vi+1 - Vi) sin ¢.. (3.5)

Cuwwature at a Node. In the finite element method, a curved bound-
ary is considered to be comprised of a number of line segments. The in-
plane curvature in this idealization does not exist and must be inter-
preted instead as the divided difference between rotations of two adja-
cent boundary segments. If sides (i-1) and (i) intersect at node i,
then the in-plane curvature at node i is given by

2wy -y )

R A P

(3.6)

3.4. Modification for Boundary Conditions in Stretching.

The boundary conditions in stretching considered in this section
are: stress, displacement, mixed, elastic, edge beam, and strain.

1. Stress Boundary Conditions.

It was stated in Section 2.4 that edge loads along exterior edges
are considered under stress boundary conditions. Edge load intensities
NX and Ny specified on a side of length | connecting two nodes i and j

(Fig. 3.4) contribute to the generalized nodal forces Rai and Ruj at the
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Fig. 3.4. Stresses specified on a side along the boundary.

nodes. From (2.21), we have

[ (3.7)
N s ds,

o

1

Rui 1 ~/£
)
7

where o = x, y, If Na is a linear function in s, then (3.7) becomes

-1 ot -
Ryi =6 (ZNai * Naj)’ :
3.8)
4ot -
Raj "6 (Nai * 2Naj)’

where Ngi is the value of Na at the posftive side of node i and N&j is
the value of Na at the negative side of node j (Section 3.1). Na may

be discontinuous at a node as shown in Fig. 3.4.

In the system equations, submatiices

Ri = {R Ry}

(3.9)

{R. R

R XJ yj}’

J
are added to Pi and Fﬁ, respectively, for every side along the boundary

with specified stress boundary conditions.
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In the case when edge loads are specified on the entire boundary,
a rigid body displacement in the form of three appropriate displacement
components (Section 2.4) must be specified so that the resulting coeffi-
cient matrix will be non-singular.

2. Displacement Boundary Conditions.

If the displacements Ui are prescribed at node i, then there are

two Tess unknown nodal displacements. The two equilibrium equations
associated with that node can be deleted from the system equations.t
Terms involving Ui in the other equations of the system are then trans-
posed to the right-hand members.

The algorithm for modifying the system equation for node i is as .

follows:
1. In K:
Kij < 02; j#i,i=1,2, ..., n. (3.10)
Kji < 0y, S ij¥i,i=1,2, ... 0. (3.11)
Kis < Iy , (3.12)
2. In P
pj <« Fﬁ - Kji Ui’ j#i,ji=1,2, ..., n. (3.13)
P, <« U'i' (3.14)

3. Mixed Boundary Conditions.

In mixed boundary conditions, one displacement component and an
edge load component in a normal direction may be prescribed. The dis-
placement component U is taken at node i in a direction r. The edge

+ During assembly of the system equations, if those equations asso-
ciated with prescribed displacements are assembled from the bottom up-
wards, the coefficient matrix would remain "compact" after those equa-
tions have been deleted.
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load component of magnitudes N; and N; at the negative and positive

sides, respectively, of node i may be prescribed in the direction q
normal to r (Fig. 3.5). The direction of r at node i is given by an
angle ¢1 measured from the positive x-axis to r, and q is taken to be

m/2 radians ahead of r.

Eq. (3.7) or (3.8), with o replaced by q, are used to compute Nqi’

the generalized nodal forces contributed by Nq specified on the two

sides issuing from node 1.
The algorithm for modifying the system equations for node i is pre-
sented below:

1. Four matrnices E, G, u%‘, and N?i‘ given by

. (3.15)
o oNpe 3N t

are degined.

Fig. 3.5. To specify mixed boundary conditions.
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2. P and K ane then modigfied acconding to:t 1 .
. (3.16)

i C s s
(1) PJ.+PJ. KjiRu’]?, j*¥i, =1, 2, » N
K+ K R'E, i#i,3=1,2,...,n (3.17)
.,T - o
(2) P, « N¥+ ER (P, - K. R'ut) + ut. (3.18)
Ki: < (ER™T) K.: (R'E) + 6. (3.19)
i,T s o4 s ‘
(3) K1.J.<—(ER ) K]'j’ j*i,ji=1,2, ..., n. (3.20’)

After the system equations have been modified, the solution of the
equations will yield

(3.21)

which are oriented in the local axes defined by ¢i' The displacements

U, oriented in the globa] axes can be obtained by using (3.2).

4. Elastic Boundary Supports.

When a boundary is elastically supported, the stress resultants on
the boundary are functions of the unknown nodal displacements along the
boundary. If the stiffness coefficients of the elastic support are kxx’

k k.., and kyy’ then the boundary stresses Nx and Ny are given by

Xy’ Tyx

. S S
N, = kxx(u - u) + kxy(v -v),

(3.22)

K s + S .y,
Ny yx(u u) kyy(v v)

where u® and v° are the specified displacements of the elastic support.
We now consider the elastic edge stresses along a side of length

connecting two nodes i and j. Substituting (3.22) into (3.7), the gen-

eralized nodal forces at the two nodes can be expressed in the form

t P& is modified before Kji because Kji on the right-hand sides

are those begore modification.
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R, = s, (U} - u,) + sij(ué - U,
(3.23)
R, = sji(u§ - )+ sjj(u§ - U,
where
uﬁ= fug v }s k=1, . (3.24)
If kxx’ kxy’ kyx’ and kyy are linear functions of s, then the 2 x 2

elastic stiffness matrices are given by

1 J 0 qd J
l 3kXX + kXx ; 3kxy + kxy
LA D A
3k, +k o 3k o+
| Tyx o Tyx L Skyy * Ky
A J v Jj
! kxx * kxx : kxy * kxy
Si37 Sy cp| oot (3.25)
ke k3 ke kI
oYX Yx Yy Yy
[ i oo i
. kXX + 3kXX : kXy + 3kxy
§.:. T 55 |- =--- - e e s
i 12 i . .
klo+3kd k4 3k
| yx k1 Ky 3yy_
where k;x is the value of kXX at node i, and so forth. It may be noted
that if kxy = ny, then Sii’ sij’ and sjj will be symmetric matrices.

In (3.23), the terms involving the unknown displacements must be
transposed to the left-hand members of the system equations.

For every side (connecting nodes i and j) on elastic boundary sup-
port, the following modifications to the system equations are required:

1. In K: K- .

< R ..
11 K'H 5

11°

K..

ij S.

.+ .
ij?

« K.

i
(3.26)
Kji < Ky % 5540
<« K.. +

JJ 553

K 55

JJ
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S s
P1. <« Pi + Sh.Ui + S].J.Uj,
(3.27)

S S
. . + .. . + .. ..
Py« Pyt 55Uy + 555U

5. Plate Bounded by an Edge Beam.

When a plate is bounded by an edge beam, the strain energy of the

beam must be included in the total potential energy of the plate given
by (1.23). The strain energy WP of the beam takes the form

W= '95; [EA(g - )2 + EI(y - x°)2] ds, (3.28)

where A is the cross-sectional area of the beam, I is the moment of area
about the centroidal axis normal to the plane of the beam, and E is
Young's modulus. Using piecewise linear displacements and a piecewise
constant thermal strain, (3.28) can be expressed in the form

b _1 E 0V2 7.
1 o2
8 Zk: (Bl * Bl Oge =™ e+ G (3.29)

where i refers to a boundary segment of length Ii’ k refers to a bound-

ary node, and the summations extend over all the segments and nodes

along the boundary. ,
We now introduce the notation

sin‘¢i

;= T . (3.30)
cos ¢;

Ci =T (3.31)

o, = EiAili’ (3.32)
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B

1
8 =7 (U + 1, 1) (3.33)

E I, +E ,I
- _k’k k-1"k-1
dk = 78 . (3.34)

Substituting (3.4), (3.5), and (3.6) into (3.29) yields

r\>|—-'

2
ip1 TS + - C.V. - €9
[ % T CiVier T C9Yy 61]

:%: [' S+ * St Ckar Yk T Ck-1Yk-1 T SkVkH

02
St Sy Ve T Ske1Vkel T kak] . (3.35)

To simplify notation here, it is convenient to name the boundary
nodes by consecutive integers beginning with 1 (Fig. 3.6). Examination
of (3.35) reveals that the coefficient of a typical variable, say, Uss

is a linear combination of the variables Uyps Ups Ugs Ug> and Ug . Thus,

if we include wb in I in Eq. (2.29), the two sums

Fig. 3.6. Naming of nodes along an edge beam bounding a plate.
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5

XX Xy
:Z: (k3m Un + k3m Vm)’

m=1

5

¥X Yy
:Z: (k3m um * k3m Vm)

m=1

(3.36)

must be added to the left-hand members of (2.30a) and (2.30b), respec-

tively, which corresponds to the equilibrium equations at node 3.

To

the right-hand members of the same equilibrium equations must be sub-

tracted the quantities F;

3 y

tioned above are defined by

kXX

31 ©
K3y = dps1cys
K33 = 05,0,
K33 = ogs3cs
kXY =

35 dgS4C3>

dzc]cz,

- agsp = d3elcy *+ ¢3) - dycaler * co)s

2 2 2 2 2
ApSy + agsy *+ dalc, + c3)" + dycy + dyes,
- 52 = dacqo(c, + cy) - d,ca(c, + ¢,)
%3°3 3“3\%2 3 4-3\%3 T “q/»
d4c3c4,

- dgsyley +cg) = dyey(sy +s,),

- dgsgle, + c3) - djes(sg + s4),

and F°3, respectively. The quantities men-

(3.37a)
(3.37b)
(3.37c)
(3.37d)

(3.37¢)

(3.38a)

(3.38b)

0UpSyCh = 03SqCq + d3(s2 + s3)(c2 + c3) +dysoc, + d4s3c3,

(3.38c)
(3.38d)

(3.38e)
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and
o - o _ o _ )
F33 = 095065 - 035463 = daBslc, + ¢33
+ dZBZCZXE + d484C3XZ: (3.393.)
FU3 = = apCpep + agcaeq - daBals, + s3)x3
+ d28232x§ + d4B4S3XZ- (3.39b)

The quantities kg% and kgé, m=1, ..., 5 can be obtained from (3.37)

and (3.38) by interchanging x and y, and s_ and Cpo NN = | P

n

We define the 2 x 2 edge

beam stiffness matrices as

XX Xy
o Kam  K3m
= I R m=1, s b (3.40)
3m 3m
We also define
FS = {F25 Fi3 b (3.41)
Then, for each Zypical node 3,
1. In row 3 of K:
< Ko + s m= 1 5 (3.42)
K3m 3m s s cees D .
2. Inrow 3 of P:
P3 <« P3 - F%. (3.43)

Repeat the above two steps forn all other nodes along the edge beam,
using similar nelations, with the subscript and superscript 3 neplaced

by the node in question.

6. Strain Boundary Conditions.

Extensional strain € and in-plane curvature Xg are specified along

a portion of the plate boundary under strain boundary conditions.

The

strains are specified for each segment and are given by (3.4); and the

curvatures are specified at each node and are given by (3.5) and (3.6).
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Let m be the total number of nodes, including the end nodes, along
the strain boundary portion; hence there are 2m unknown nodal displace-
ments. One equation like (3.4) can be written for each of the m-1 seg-
ments, and one equation Tike (3.6) can be written for each of the m-2
nodes other than the end nodes. This results in a total of 2m-3 equa-
tions. The remaining three equations required to solve the strain
boundary portion are supplied in one of two conditions:

First, three components of a rigid body motion of the boundary
portion may be specified (i.e., two displacements at a node and the ro-
tation of a segment).

Secondly, two force resultants and a moment about some point of
the boundary forces acting on the boundary portion may be computed to
provide three scalar equations.

It may be noted that the equations to be assembied for the strain
boundary portion are compatibility equations or strain-displacement re-
Tations which are to replace the original equilibrium equations. This
will result in certain rows being replaced without replacing the corre-
sponding columns, and the coefficient matrix will become, in general,
non-symmetric.

We now number the nodes along the strain boundary portion consecu-
tively from 1 through m in the positive s-direction, with segment (i)
following node i. Eq. (3.4) for segment (i) can be combined with (3.5)
substituted in (3.6) for node i, and the result takes the form

- Ji-—] Ui-] + ( J.i_-l + H'i) U'i - H'i U'H‘] = C.i (3.44)
1 0 0
where I, ='7—' R (3.45)

.i
n Lcos ¢n sin ¢n

: sin ¢n - COS ¢n
H =— , (3.46)
n | cos ¢n sin ¢n
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C. = . (3.47)

(1 + 1)

N —
L

For each of the m-2 nodes of the boundary portion other than the
two end nodes, the original equilibrium equation is replaced by (3.44)
written for that node. Consequently, 2m-4 scalar equations are obtained.

It may be noted that (3.4) written for segment (1) is not included
in the above equations, and it can be written in the form

a,U; - a, U, = e]l], , (3.48)
where

a; = [sin ¢ - COoS ¢1J. ‘(3.49)

The remaining equations required to solve the strain boundary por-
tion are now considered.

In the first case when three components of a rigid body motion of
the boundary portion are specified, the two displacement components given
for any node i are treated as in the case of displacement boundary con-
ditions. The specified rotation w3 for segment (j) is substituted into
(3.5), yielding

b.U. - bJ UJ+'| =w.]1.]’ (3'50)

where

bj = [%os ¢j sin ¢j]. (3.51)

Egs. (3.48) and (3.50) can be combined to replace the original equations
for node 1.

In the second case, two force resultants and a moment about some
point are to be computed. To obtain the two force resultants, we sum
all the m matrix equations associated with the m nodes on the strain
boundary. The two force resultants then appear on the right-hand mem-
ber of the resulting matrix equation which is to replace the original
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equation for node 1. The operations can be represented by the relations

NE

K.l.*- K.

iTH ij° j=1,2, ....n | (3.52)

m
P2 b

- (3.53)
i=1

The moment about a point, say, node 1, of the boundary forces can be
obtained by premultiplying each of the m matrix equations considered
above by the matrix

d'i = {y] - Y Xy~ X'[:] s (3.54)

which contains the differences in coordinates between node 1 and node 1.
After the products are summed, the required moment appears on the right-
hand member of the resulting scalar equation. This equation and (3.48)

can be combined to replace the original equation of node m. The opera-

tions can be represented by the relations

m
Ko +}: D;Ki; + Ay (3.55)
i=1
m
sz hn ; D'l K.iz - A'ls (3'56)
m .
Ky * ; DK 5734 .., (3.57)
5
d.P
=1 7
P, < , (3.58)
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Y17 Y5 SRR
D, = (3.59)
0 U .
© 0
Ac=1 (3.60)
sin ¢1 - COS ¢1

The a]gorithm of modification for strain boundary conditions can be
summarized as follows:

Case 1.
1.
2.
3.

Case 2.

A rigid body motion is specified.

Replace oniginal equation fon node 1 by (3.48) and (3.50).
Replace oniginal equations §or othen nodes by (3.44).

Treat specified displacements at a node as Ln displacement
boundary conditions.

No rigid body motion is specified.

Replace original equation for node 1 by applying (3.52) and
(3.53).

Replace oniginal equations forn nodes 2, 3, ..., m=1 by (3.44).
Replace original equation forn node m by applying (3.55),
(3.56), (3.57), and (3.58).

3.5. Modification for Boundary Conditions in Bending.

The boundary conditions in bending considered in this section are:

displacement, stress, mixed, stress function, and standard boundary

conditions.

Stretching-bending duality can be applied in the algorithm

of modification for boundary conditions in stretching developed in the

previous section.

1. Displacement Boundary Conditions.

The quantities to be specified for a boundary portion with displace-

ment boundary conditions are the nodal dlsplacement w and the sTope w
of the plate edge in the direction of the outward normal n.
finite element method, only the average value of w n

N
In the

along a side need
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be specified. The average value of the slope w(i) in the s-direction
for side (i) of length [ is given by
(i) . i}
W' o= (wj wi)/l (3.61)

where nodes i and j are connected by side (i). The components w % and
W y of the average edge slope in the global coordinate system may be
obtained from w n and w s by relations similar to (3.2). Explicitly,

the relations are

W W COS ¢; - W

X .n sin ¢i’

»S
(3.62)

W w_sin ¢, +w
1 s

.y N cos (b'i'

S

The generalized nodal rotations due to edge slope may be computed

through equations dual of (3.7), in which the curvatures w and w

XS ys
are required. Through integration by parts, however, they can be com-.

puted directly from w X and w , and the results are

2y
b ] (i)
Ry = - Wy TWy
v i (1)
Ryi - W,x w,x ’
v ) (3.63).
xJ sy sy
| (1)
Ryi Wox TVxe

where the superscripts k and (k) denote the average quantities at node k
and side (k), respectively.
In the system equations, submatiices

SRR S |
(3.64)
Rt ARG Ry

are added to P% and P, nespectively, for every side along the bound-
arny with specified displacement boundary condition.
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2. Stress Boundary Cenditions.

In stress boundary conditions, edge stress couple Mn and edge ef-
fective shear Qne are specified for a portion of the boundary. From

these values and the particular solution, we obtain
* =M . MP
Mn‘ an Mn’
b (3.65)
* = -
Qne Qne Qne’

where Mﬁ and Qﬁe are dual of € and Xg> respectively, in the stretching

problem. The algorithm for modification of the system equations is ex-
actly the same as strain boundary conditions in stretching. '

The quantities Ui’ Vj, and Qj are quantities dual of a rigid body

motion in stretching and may be specified for the stress boundary por-
tion.
The equations dual of (3.4), (3.5), and (3.6) take the form

M?[i = - (U1+] - Ui)‘sin ¢; + (Vi+1 - Vi) cos 9., (3.66)
Qili = - (Ui+i - Ui) cos ¢, - (V1+] - Vi) sin 95 (3.67)
2(2. - Q. 1)
_ i i-1
Q.{; = E (3-68)

L ™ i

where M? is M; for side (i) and Qﬁ is Q;e at node 1.

3. Mixed Boundary Conditions.

In mixed boundary conditions; one stress function component and a
curvature component in the same direction are prescribed. The notation
for directions of specified quantities (Fig. 3.5) and the algorithm for
modification of the system equations are exactly the same as its dual in
stretching.

4. Stress Function Boundary Conditions.

If the stress functions U% are prescribed at node i, then there are
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two less unknown nodal stress functions. The algorithm for modification
of the equations are exactly the same as that under displacement bound-
ary conditions in stretching.

5. Standard Boundary Conditions.

Several standard boundary conditions which are special cases of the
previous boundary conditions are presented here.

SIMPLE SUPPORT:
Simple support is a special case of mixed boundary conditions. Dis-
placement component w and stress couple Mn are both zero along the bound-

ary. With w zero along the s-direction, Xg is also zero. We take the
particular solution functions KX and K‘y which are zero along the bound-
ary. Since KS and Kn are then zero by transformation, Mﬁ becomes zero

by using (1.33). Boundary conditions for the homogeneous problem which
is dual of the stretching problem are obtained as follows:

From (3.65), M; = 0. WithU = Mﬁ, U

S.s is constant and is taken,
&)

S
for convenience, to be zero. Since

* =
X§ becomes zero. Thus, the required boundary conditions are that both

Us and X; are zero along the boundary.

LINE OF SYMMETRY:

The 1line of symmetry boundary results when there is symmetry in
geometry and loading. By using the symmetry boundary, only half or a
quarter of a plate need be solved.. The symmetry boundary is a special
case of mixed boundary conditions.

Along the 1ine of symmetry, the normal slope W,n and effective

shear Qne are both zero, which leads to zero the curvature Xns * We take

the particular solution functions which results in KS and Kn 0 both

,n
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being zero.
Boundary conditions for the homogenecus problem which is dual of
the stretching problem are obtained in the form

* = =
Xns = Xns 0
and

- D(K + vk ) = 0.

n,ss Qne S,n n,n

To eliminate the quantity dual of a rigid body motion in stretching, we
take Un as zero, for convenience. Thus, the required boundary condi-

tions are that both Un and X:s are zero along the boundary.

FREE:

This is a special case of stress boundary conditions in which both
Mn and Qne are zero.
FIXED SUPPORT:

This is a special case of displacement boundary conditions in which

both w and w n are zero.
2 .




CHAPTER 4

COMPUTER IMPLEMENTATION OF THE PLANAL SYSTEM

4.1. Introduction.

The dual finite element method described in the previous chapters
is implemented into a system employing a large scale digital computer.
This computer system which is described in the remainder of this work
is called the PLANAL System, representing the Plate Analysis Language.
The scope of the system is limited to solutions of plate probliems in
stretching and bending.

The PLANAL System is developed as a subsystem of the Integrated
Civil Engineering System (ICES) at the Department of Civil Engineering,
Massachusetts Institute of Technology. Externally, an ICES subsystem
consists of a series of commands, which serve as communication Tinks
between a user and the subsystem. Internally, each command is processed
by a command interpreter which calls translation programs (Command
Definition Blocks, or CDBs) written in the Command Definition Language
(CDL). A CDB in turn calls computer programs (subroutines) written in
ICETRAN (ICES FORTRAN) which is a FORTRAN-based, procedure-~oriented
language. The subroutines finally perform the intended tasks in the
system. A complete description of ICES, CDL, and ICETRAN may be found
in [15,16,21].

A number of advantages result in developing the PLANAL System in
ICES. The input commands are formed in a free, problem-oriented style,
using vocabulary already familiar to the user (Chapter 5). The features
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of dynamic memory allocation (DMA) does not 1imit the size of a problem
(e.g., the maximum number of nodes) that can be handled by the system.
Finally, related programs are formed into units called load modules;
thus, efficient use of the core of a computer may be realized by bring-
ing into core only those modules which are necessary for the current
computation.

The organization and sequence of operations of PLANAL are similar
to those of STRUDL [17,18] which is another ICES subsystem. The system
is also partia]Ty based on works by Nagy [19] and Ferrante [11].

4.2. Organization and Sequence of Operations.

After PLANAL has been initialized as a subsystem of ICES, addresses
for COMMON variables are assigned for transmitting data between CDBs and
ICETRAN programs. A COMMON map is included in Appendix C. Most of the
arrays and scalars used in PLANAL are COMMON variables, and are described
briefly in the COMMON map. A more detailed description of many of these
variables is presented in Appendix D. The subroutines in PLANAL are
organized into 19 load modules. Documentations of the Toad modules and
subroutines are given in Appendices E and F, respectively. A complete
l1isting of the CDBs and ICETRAN programs is included in Appendix G.

The sequence of operations in PLANAL is illustrated in Fig. 4.1.
Each operation calls for one or more load modules, and each load module
may be called more than once under different aliases (which are also
entry points to a module).

1. Data Input.

Topology of the plate to be analyzed is processed by Load
Modules STINCI and STEJPR. Informations on element properties,
boundary conditions, and loadings are then processed (STHGEN,
STHINI).

2. Finite Element Analysis.

When all input data has been provided, the FINITE ELEMENT
ANALYSIS command is issued by the user. Control is then transferred
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( START )

STINCI, STEJPR, STHGEN, STHINI
STHMAI
STHGEN
Symm. Non-symm.
(- R
STHASS STHNAS
Stretching < D Bending
STHIFS, STHPAR, STHP1R
T
¥
STHBCM
Stretching ¢ Bending
STHSTR )
STHSTR STHBEN
STHSAS STHSAS
y
Symmif ‘)Non-symm.
STHSVR STHNSL

STHBKS, STHBIS

END

Fig. 4.1. Sequence of operations in PLANAL.
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to STHMAI which sets up subsequent operations.

Generation of Local Coefficient Matrices.

Local coefficient matrices for all the elements are generated
by Load Module STHGEN.

Assembly of the Global Coefficient Matrix.

The global coefficient matrix is assembled from the local coef-
ficient matrices according to the connectivity of the nodes. Depend-
ing on the symmetry of the global coefficient matrix, either STHASS
or STHNAS is used.

Bending Particular Solution.

“In the bending problem, when particular solution functions are
not provided, standard PLANAL procedure will be used for their con-
struction (STHIFS, STHPAR, STHPIR).

Management of Modification of System Equations.

After the gtobal coefficient matrix has been assembled, the
‘right-hand members of the system equations are modified for the Toad-
ing (STHBCM). STHBCM also controls the calling sequence of the
- processing of different boundary conditions along the plate boundary.

Boundary Conditions Modifications.

The system of equations is modified according to existing
boundary conditions. Different load modules are called depending on
whether the problem is one of stretching or one of bending (STHSTR,
STHSTR, STHBEN, STHSAS).

Solution of the System Equations.

The unknowns (displacements or stress functions) are solved
from the modified system equations by calling the proper load module
(STHSVR, STHNSL).
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9. Back~substitution.

Quantities related to the unknowns can be computed by back-
substitution after the unknowns have been solved (STHBKS, STHB1S).

4.3. Information for Installation of PLANAL.

ICES contains a number of subsystems and a basic system that con-
trols all the subsystems. The operation of a subsystem is independent
of any other subsystems. Since the PLANAL System is a part of ICES, any
execution or modification of PLANAL will require the use of the basic
system of ICES itself.

For development, modification and execution of PLANAL or any ICES
subsystem, the "ICES/360 Basic System and Language Processors," a pack-
age of basic system programs, is required. For execution only, the
"ICES/360 Basic System," a subset of the above, is needed. (The sole
distributer of ICES programs is the IBM Corporation, and the Program
Order Numbers of the above two packages are 360D 16.2.005 and 360D
16.2.004, respectively.)

Because of interface requirements during development, ICES at pre-
sent operates only in an IBM Operating System/360 environment. PLANAL
requires as a minimum machine an S.360 Model 40, with a 128K-byte core,
two 2311 disk drives (or their equivalent), and input/output devices.
The above packages with their proper documentation may be obtained from
IBM Corporation by writing: IBM Corporation, Program Information De-
partment, 40 Saw Mil1l River Road, Hawthorne, New York 10532, U.S.A.

The PLANAL System as described here has not been released to the
public. Further information on PLANAL and ICES may be obtained from:
Headquarters, Department of Civil Engineering, Room 1-290, 77 Massachu-
setts Avenue, Cambridge, Massachusetts 02139, U.S.A.




CHAPTER 5

USER’S MANUAL OF THE PLANAL SYSTEM

5.1. Introduction.

The user's manual in this chapter provides a complete description
of all the commands in PLANAL, the Plate Analysis Language. The com-
mands in the PLANAL System are written in a problem-oriented style that
is easily recognizable and does not require a fixed format.

Input information describing a problem to be solved is supplied to
the PLANAL System through a set of commands. Each command is interpret-
ed by a language processor, called the command interpreter. Control is
ultimately transferred to the appropriate subroutines in the PLANAL Sys-
tem to perform the intended task. By suitably assembling a set of com-
mands, a user can solve a problem using the PLANAL System.

5.2. Capabilities of the System.

At present, the analysis capabilities of the PLANAL System fall in-
to two catagories: plate stretching problems, and plate bending prob-
Tems.

Plate Strnetching. In the plate stretching problem, the system can
analyze a plate of arbitrary shape, variable thickness and material
properties, and under arbitrary in-plane loading. The boundary condi-
tions available are those of displacement, stress, mixed, elastic sup-

75




76

port, edge beam, and strain.

PLate Bending. In the plate bending problem, when there is no
lateral loading, or when there is a lateral loading and corresponding
particular solution functions are supplied, the system can analyze a
plate of arbitrary shape, and variable thickness and material proper-
ties.

When there is a lateral loading but no particular solution func-
tions are supplied, the present system will construct appropriate par-
ticular solution functions only if certain requirements in geometry and
loading are satisfied. The plate must be of rectangular shape, and uni-
form thickness and material properties. The loading is restricted to
one which varies linearly in two orthogonal directions x and y. This
load function q is expressible in the form

q = CyX + Co¥ * Cgq,

where Cys Cos and Cgy are arbitrary constants. (Uniformly distributed
loads and hydrostatic loads are examples of this form of loading.) The
system can also analyze the case of a concentrated lateral force applied
at the intersecting point of the lines of symmetry of the plate.

The boundary conditions available are those of displacement,
stress, and mixed. The same boundary conditions Tisted under simple
support, fixed support, free, and symmetry are also available.

5.3. Format of Commands.

A1l commands in PLANAL have a free format in the sense that there
are no requirements for certain information to appear in certain pre-
scribed columns in an input card. However, the following rules must be
observed in preparing input for PLANAL:

A11 80 columns of a card may be used.

Embedded blanks in words are not allowed.

Where one blank is required, several may be used.

The first character on a card can be placed in any column.

Ot W N

If more than one card is needed to complete a command, continuation
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cards are allowed. To continue a command, a minus sign preceded by
at Teast one blank is placed on the card to be continued. (The
minus sign is to be the last character typed on that card.)
Example:
13459 14 THICKNESS 1.0 EX 30000000.0 -
EY 30000000.0 PX 0.25 PY 0.25 G 12000000.0

6. Comments may be interspersed among the commands at the user's dis-
cretion. The card columns after a $ sign preceded by at least one
blank are available for user's comments. Cards with a § sign in
card column 1 are likewise available for comments.
Example:
$ THIS IS A UNIFORMLY LOADED PLATE.

7. A11 alphameric data must be placed between single quotes,
Words such as NODE COORDINATES, ELEMENT, or THICKNESS are in the
standard vocabulary of PLANAL and are not data; therefore, they

must not be placed between single quotes.
Example:
ELEMENT PROPERTIES TYPE 'CST'

8. If data items in a command are supplied in the order specified, no
Tabels need be used. If a label is used with any data item in a
command, all succeeding data items for that command must be la-
beled. For example, in the NODE COORDINATES command,

1 X 10. Y 20.

1 10. 20.
1 10. Y 20.
1Y 20. X 10.

are all acceptable forms (here, X and Y are labels). But
1 X 10. 20.
is not acceptable to the system.

5.4. Convention.

Throughout the remainder of this chapter, certain notational con-
ventions will be followed in describing the commands.
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Underlined Characters. In the command description, characters
which are underlined are necessary symbols for identification by the
command interpreter and must appear in the commands. Other characters
or words listed in the command but not underlined may be included for
clarity or otherwise omitted. For example, in the TYPE specification
command (Section 5.6),

TYPE PLATE STRETCHING
TYPE STRETCH
TYP STR

provide the same information for the system.

Mode of Data. Data are either real, integer, or alphameric as des-
ignated. A real data item requires a decimal point while an integer
data item does not. An alphameric data item consists of one or more
characters each of which can be either a letter or a numeral. In the
command description, real and integer quantities are designated by v and
n, respectively, with idertifying subscripts. Words placed between sin-
gle quotes shown in the form of a command are the only data that must be
alphameric.

Names and Lists. The names of nodes, elements or boundaries may be
integer or alphameric. Some of the commands require a node name list or
an element name 1ist. A node name 1ist may consist of the name of a
single node, or the names of a number of nodes. If the names of the
nodes are consecutive integers nys n1+1, cees No, then the 1ist may be

supplied in the form ny T0 n,. When a name is alphameric, it must be

enclosed by single quotes. The conventions for an element name 1list are
the same as for a node name Tist.

Example:

4 THICKNESS 1.0

3 TO 11 THICKNESS 1.0

2 7 "AZ' THICKNESS 1.0

However, when node names (not node name list) are indicated, the names
of one or more (up to ten) nodes can be specified, but the option of
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Ny TO n, is no longer available.

Brackets and Braces. In the commands, square brackets [ ] and the
information they contain are to be replaced by the appropriate input
form representing the information required. Braces { } are used to in-
dicate where choices are available in the input.

5.5. Preparation of Input.

PLANAL commands can be classified into ten groups. Each group pro-
vides a certain type of information and is made up of one or more input
cards. The ten groups are:

Problem initiation,

Type specification,

Unit declaration,

Geometry and topology.,

Element properties specification,

Boundary condition specification,

Loading specification,

Particular so]utﬁon functions for the bending problem,
Qutput and analysis commands,

Termination statement.

O W 00 ~N O O B W N -

et

It is recommended that the order of groups of commands as given
above should be followed in describing a problem, although certain
minor variations are acceptable. (For a comparison with the details of
input to a parallel system STRUDL, the STRUDL User's Manual [18] may be
consulted.)

A11 the above groups of commands except Groups 3, 7, and 8 must be
supplied before a problem can be solved in the PLANAL System. If stan-
dard units (Section 5.6) are assumed, unit declaration in Group 3 can be
omitted. When there are no loadings, Group 7 can be neglected. Group 8
is excluded from the input commands in the stretching problem or in the
bending problem when particular solution functions are unknown.
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5.6. Description of Commands.

The ten groups of PLANAL commands are now described in detail in
this section. Examples are included where appropriate.

1. Problem Initiation.

PLANAL ['name'] ['title']

The word PLANAL signifies the beginning of a new problem to be
solved by the system. The 'name' is an alphameric name chosen by the
user to identify his problem. It must be enclosed in single quotes and
may have a maximum Tength of eight characters. The 'title' is optional
(may be omitted); it contains the title of the problem or any other com-
ments, and may have a maximum length of 64 characters.

Example:
PLANAL 'U44LSSL1' 'S.S.SQ. PLATE, 25 NODES, 32 ELEMENTS.'

The following two commands are optional and are placed, if used,
after the problem initiation card. They are usually not included in a
normal PLANAL execution job.

DEBUG 3 ALL ;

COMMON
PLDEBUG

When certain system errors are detected during execution, processing of
the problem in the computer will be interrupted. A DEBUG ALL command
will cause the 1isting (dump) of the entire core of the computer at the
time of interruption. A DEBUG COMMON command will cause the listing of
the COMMON area of the core. The DEBUG command is useful only for sys-
tem debugging.

The PLDEBUG command causes the printing of the names of all the
important subroutines whenever they are called by the system. It is
useful if the calling sequence of subroutines is desired.

Example:

PLANAL 'EXAMPLE'
DEBUG COMMON
PLDEBUG
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2. Type Specification.
leave blank
SYMMETRICAL

NONSYMMETRICAL

PLATE STRETCHING
PLATE BENDING

TYPE

This command is used to specify the type of the problem in question.
The types available at the present are PLATE STRETCHING and PLATE BENDING.
The form of the stiffness coefficient matrix in the system equation
may be symmetrical or non-symmetrical depending on the types of boundary
conditions involved. If the matrix for a particular problem is symmet-
rical, the user may specify the SYMMETRICAL form, or (perhaps for com-
parison) the NONSYMMETRICAL form, which is also acceptable to the system
in this case. However, by leaving the last item blank, the correct form
of symmetry will be automatically selected by the system.
Example:
TYPE PLATE BENDING

3. Unit Declaration.

[Tength unit]
[force unit]

UNITS [angular unit]
[temperature unit]
[time unit]

The UNITS command specifies the units of input data following the
statement and designates the units for oUtput. The command is optional
(may be omitted) and may be used any number of times in the same problem.
If they are not specified, the units assumed as standard in the five unit
types are inches, pounds, radians, Fahrenheit, and seconds, respectively.
The following are the available units for the system:

Length unit: INCHES, FEET, FT, CENTIMETERS, CM, or METERS,
Force unit: POUNDS, LB, KIPS, TONS, KILOGRAMS, KG, or MTON,
Angular unit: RADIANS, or DEGREES,

Temperature unit: FAHRENHEIT, or CENTIGRADE,
Time unit: SECONDS, MINUTES, or HOURS.
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Any unit types not given in a UNITS command are assumed to remain
unchanged from those previously specified (or the standard values).
Example:

UNITS FEET KIPS FAH
UNITS SEC RADIANS INCHES LB

4. Geometry and Topology.

NODE COORDINATES
[node name] X [v,] X.[Vy] g BOUNDARY s

lTeave blank

ELEMENT INCIDENCES
[element name] [node name 1] [node name 2] [node name 3]

BOUNDARY INCIDENCES

The NODE COORDINATES command specifies the coordinates of each node
with respect to an arbitrarily chosen right-handed global frame. The
xy-plane is to be taken as the plane of the plate. The x- and y-
coordinates are designated by Vy and vy, respectively, and they can be

supplied in any order. When no labels (i.e., X,Y) are given, the values

are assumed to be given in the order of Vy and v For nodes which are

v
on the boundary, the letter B is required to be placed after the coordi-
nate values. '

The ELEMENT INCIDENCES command specifies the connectivity of the
elements. The nodes of an element must be given in a direction sweeping
from the positive x-axis to the positive y-axis, i.e., in a counter-
clockwise order with respect to a right-handed reference axes (Fig. 5.1).
The first node given can be any node of the element. For example, the

element incidence for element 5 in Fig. 5.1 may be specified in one of
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Fig. 5.1. Order for specifying element incidence.

the following forms:
5132
5321
5213

The BOUNDARY INCIDENCES command is used to assign names to the
boundaries of the plate for subsequent identification. Node name may be
the name of any node located on the boundary being named. A boundary is
defined here as a completely closed path bounding the plate. There are
more than one boundaries bounding a plate with interior openings. This
command causes the chain of boundary nodes for each boundary to assembled.
Thus it must be used after the NODE COORDINATES and ELEMENT INCIDENCES
commands, but before any boundary conditions are specified.

Node names, element names, and boundary names may be either integer
or alphameric. In the case of alphameric identification, the name must
be enclosed in single quotes.

Examples :

NODE COORDINATES

3 X 3.75 Y 0.00 BOUNDARY
'N7' Y 0.5 X -1.50 B

4 3.751.00 B

ELEMENT INCIDENCES
1087 14
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'E2' '3N' 14 'A2'
BOUNDARY INCIDENCES
11

"BOUNDARY ' 32

5. Element Properties Specification.

ELEMENT PROPERTIES TYPE ['type']
[element name 1ist] THICKNESS [vt] EK-[Vex] EX_[vey] -

PX Lvp,d Y [vpy] CTX [Lve,d CTY Ly 1 6 [vg] DENSITY [v,]

The thickness and material properties of the elements are specified
in this command and can be given in any order. The type of elements to
be used in the problem is specified in 'type', and the only type that
can be used at present is 'CST', representing Constant Strain Triangle
element. The element name 1ist may consist of the name of a single ele-
ment, or a group of elements. The list may be replaced by the word ALL
(no quotes) if all elements of the plate have the same properties. The
variables, which are to be real, have the following meaning:

v, = average thickness of the element,

Vey = Young's modulus in the x-direction,

vey = Young's modulus in the y-direction,

Vox = Poisson's ratio in the x-direction,

vpy = Poisson's ratio in the y-direction,

Vex = thermal expansion coefficient in the x-direction,
ch = thermal expansion coefficient in the y-direction,
vg = shear modulus,

Vq = material density of the element.

When Vey is not given, it is assumed to be Vex when pr is not
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listed, it is equated to v_ v__/v When the other variables are not

. px ex' ‘ey’
given, they will be taken as zero.
Example.:

ELEMENT PROPERTIES TYPE 'CST'
1 70 16 TH 1.0 EX -30000000.0 PX 0.25 DEN 0.3 G 12000000.0

ALL TH 1.0 EX 10000000.0 PX 0.25 DEN 0.1 G 4000000.0

6. Boundary Condition Specification.

BOUNDARY CONDITION [‘boundary name']  type
[boundary portion] [quantity 1] [v]] [quantity 2] [v2] ces

This command specifies the boundary conditions on all boundaries of
the plate. The 'boundary name' is the name of the particular boundary
for which boundary values are tabulated. Again, a boundary is defined
as a completely closed path bounding the plate.

The type of boundary condition can be one of the following: In
stretching: DISPLACEMENT, STRESS, MIXED STRETCHING, ELASTIC, EDGE BEAM,
and STRAIN; in bendihg: DISPLACEMENT, STRESS, FUNCTION, MIXED BENDING,
SIMPLE SUPPORT, FIXED SUPPORT, FREE, and SYMMETRY. Different appropri-
ate boundary quantities are to be specified for different types of
boundary conditions, and they are 1listed together on the following pages.
Only one type of boundary condition can appear in one BOUNDARY CONDITION
command. For a boundary with more than one types of boundary conditions,
several BOUNDARY CONDITION commands will be required, and the order in
which they are supplied is immaterial.

The positive s-direction along a boundary is taken to be the posi-
tive sense along the boundary. When one traverses in the positive s~
direction along a boundary, the normal vector outward from the plate
points to the right of the boundary. In the right-handed Cartesian co-
ordinate system adopted here, this direction is counter-clockwise for an
exterior boundary, and clockwise for an interior boundary.

Boundary portion defines the boundary nodes and/or the element
edges between boundary nodes that have the prescribed boundary values.
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There are four forms of boundary portions to accommodate various situa-
tions of specifying boundary values:

1. [node name] POSITIVE [quantity 1] [v]] ...

2. [node name] NEGATIVE [quantity 1] [v]] ..

3. [node name] [quantity 1] [v]] ...

4. [node name 1] TO [node name 2] [quantity 1] [v]] ...

In the {inst form, the values Vis - specified are the Timiting

values approached from the positive side of [node name]. In the second
form, the values specified are the 1imiting values approached from the
negative side of [node name]. The first and second forms of boundary
portion allow discontinuous boundary values to be specified. When the
values at the positive and negative sides of a node are the same, the
thind form can be used. In the fowrth form, the same nodal values are
assigned to [node name 1] POSITIVE, to [node name 2] NEGATIVE, and to
all intermediate nodes along the boundary between [node name 1] and
[node name 2], traversed in the positive sense. When the values of a
quantity at the two end nodes of an element edge are given, linear
variation of that quantity along the edge, wherever applicable, is
assumed. The following example illustrates the use of the four forms
of boundary portions.

Exampfe 5.1. Consider a rectangular plate subjected to distributed
boundary stresses as shown in Fig. 5.2. The plate is divided into
elements and the ten nodes are named as shown. The positive sense of
the boundary goes from node 10 to node 9, and so forth. The boundary is
named 'B1' and the boundary condition is that of stress. Boundary con-
dition for the complete boundary can be specified by the following
statements:
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J
2.0 2.0
T
7 ]
10 1 2 3 4
9 8 7 6 5 X

Fig. 5.2. Example to illustrate forms of boundary portion.

BOUNDARY CONDITION 'B1' STRESS

4 POS NY 0.0
3 NEG NY 2.0
3 POS NY 1.0
2 NEG NY 2.0
2 TO 10 NY 1.0
10 TO 4 NY 0.0

To illustrate an alternate form, the second last card above can
be replaced by three cards:
2 POS NY 1.0
1 NY 1.0
10 NEG NY 1.0

It should be noted that 1 TO 2 involves the complete boundary ex-
cept the side between nodes 1 and 2. 1 TO 1 implies that the same
boundary values are specified for the complete boundary.

Each type of boundary condition requires certain boundary quanti-
ties for its complete description. In the command format, boundary
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quantities are designated by quantity 1, quantity 2, etc. The boundary
quantities can be specified in any order. Quantities not specified will
be taken as zero unless stated otherwise. Whenever components of vec-
tors are indicated, they are taken with respect to the global frame un-
less stated otherwise. The types of boundary conditions with their
associated boundary quantities are described below:

(1) Type: DISPLACEMENT
Quantities: U [v 1V [v 1MW [v IR [v.]

vy and v, are the x- and y-components of the displacement for

all nodes along the specified boundary portion, and are to be en-
tered for the plate stretching problem.
Vi is the z-component of nodal displacement, and Ve is the

edge rotation B = - w n They are to be entered in the plate

s

bending problem.

(2) Type: STRESS
Quantities: NX [v 1 NX-[Vhy] g_[vq] M [v.1 ROTATION [v ]

In the stretching problem, v__ and Vi

Yy
components of the edge stress resultant (force/unit length) along

nx are the x- and y-

the boundary portion. The values specified are nodal values, and
linear variations of these values are assumed between nodes.

In the bending problem, v_ is the z-component of the edge

q
effective shear Q:e (force/unit length), and Vi is the edge stress

*
couple M__ (bending moment/unit length) whose vector is oriented

in the positive s-direction. If the quantity dual to rotation in
stretching is known, it can be specified in Vier If Vi, is not spec-

ified, it will not be automatically taken as zero. (See Type (6)

for use of Vr')

(3) Type: MIXED STRETCHING
Quantities: gg_[vur] ﬂg_[vnr] ANGLE [va]
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This boundary condition is applicable to the stretching prob-
lem only. Vur is the nodal displacement in the r-direction in the

plane of the plate (Fig. 5.3). Vor is the edge stress resultant

~ (force/unit 1ength) in the direction perpendicular to, and ©/2 ra-

dians ahead of, the r-direction. And Vq is the positive (counter-

clockwise) angle from the positive x-axis to the r-direction.
If Vur is not specified it would not be taken as zero. The

ends of a bdundary portion of MIXED STRETCHING may be adjacent to

a boundary portion of DISPLACEMENT or STRESS in stretching. By not

specifying Vur at such end nodes, Vur will either take on the value

specified under DISPLACEMENT or be determined by the governing sys-
tem of simultaneous equations.

Type: ELASTIC
Quantities: US [v ] VS [v,cl KXX [y, ] KKY [y
KX Ly, 1KY Ly, ]

In this command, which is available for the stretching problem
are the elastic constants of the elas-

kx,y:l -

only, Vikxx? kay’ kax’ kay

v_ _ are the x- and y-components of support dis-

tic support, Vus® Vs

placement.

Vnr

/////////1:;-direction
<<Q*2%<? Vur

/Va/

Fig. 5.3. Notation for mixed boundary condition.
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Type: EDGE BEAM
Quantities: NX [v ] NX-[Vny] EB [v,] AB [v 1 IZ [v,]

This command is available for the stretching problem only.

The guantities Vix and Vny are the x- and y-components of the edge

stress resultant (force/unit length) applied along the edge beam
within the specified boundary portion. The values specified are
nodal values, and linear variations of these values are assumed

between nodes. Ve is the Young's modulus of the beam material in

the direction of the beam, and v is the moment of area about a

centroidal axis in the z-direction.
When edge beam is specified anywhere along a boundary, the
entirne boundary must be specified as an edge beam. Dummy portions

of the edge beam can be effected by taking Vas Vs and v; as zero.

a

Type: STRAIN
Quantities: EPSILON [ve] Qﬂl_[vc] ROTATION [Vr]

This boundary condition is applicable to the stretching prob-

lem only. It is used when the extensional strain Vo of a boundary

segment and the curvature‘vC at the junction of two adjacent bound-

ary segments are known along a boundary portion. If the rotation
Vi is not specified, it will not be automatically taken as zero.
Internally, Ve specified at a node is taken as the specified curva-

ture of the boundary at that node. The quantities Ve and V. spec-

ified at a node are taken as the extensional strain and rotation,
respectively, of the segment following that node in a positive s-
direction. ‘

It should be noted that the purpose of specifying rotation of
a segment together with the specifying of displacements of a node
is to fix a rigid body displacement of the plate considered. Such
a rigid body displacement can be specified uniquely only once.
Therefore, when the rotation of one segment along a boundary portion
is specified, the displacements at one of the nodes along that
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boundary portion must also be specified through a DISPLACEMENT com-
mand.

In the case when an entire boundary is of STRAIN boundary con-
dition, a special condition exists. Let there be n boundary nodes
(therefore n segments) along the boundary. The strains along only
n-1 segments and the curvatures at only n-2 nodes need be specified,
in addition to the necessary specification of a rigid body dis-
placement (3 quantities). That the above specification is suffi-
cient can be verfied by the fact that (n-1) + (n-2) + 3 = 2n, which
is equal to the 2n unknown displacements along the boundary (two
displacements at each of the n nodes).

Type: FUNCTION
Quantities: g_[vu] y_[vv]

In this boundary condition, which is applicable to plate bend-
ing problems only, stress functions U and V are specified. It is
dual of the DISPLACEMENT boundary condition in stretching.

Type: MIXED BENDING
Quantities: UR Lv ] Qﬂl_[vc] ANGLE [va]

In this boundary condition, which is applicable to plate
bending problems only, the quantities dual of those in MIXED
STRETCHING boundary condition are specified. The quantities are
stress function Vype Curvature v, and angle Vy- (See Type (3).)

Type: SIMPLE SUPPORT
Quantities: None.

This command is available for the bending problem only. Inter-
nally, the system changes this boundary condition to that of MIXED
BENDING, assigning a constant value to the s-component of the
stress function vector along the specified boundary portion.

Type: FIXED SUPPORT
Quantities: None.
This command is available for the bending problem only. Inter-
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nally, the system changes this boundary condition to that of DIS-
PLACEMENT, equating to zero the displacements and rotations along
the specified boundary portion.

(11)  Type: FREE
Quantities: None.

This command is available for the bending problem only. In-
ternally, the system changes this boundary condition to that of
STRESS, equating to zero the edge effective shear and the edge
stress couple along the specified boundary portion.

(12) Type: SYMMETRY
Quantities: None.
This command is available for the bending problem only. In-
ternally, the system changes this boundary condition to that of
MIXED BENDING, assigning a linear function Un to the n-component

of the stress function vector along the specified boundary por-
tion. In the case of a distributed load (1imited to linear func-
tions of x and y), U, will be a constant. This command can be

applied only to a 1ine of symmetry in both geometry and Loading.

Example 5.2. As an example to illustrate the combination of some
boundary conditions commands, consider a rectangular plate in stretching
subjected to boundary stresses as shown in Fig. 5.4. The boundary is
named 'EXTERIOR'. The prescribed displacements are u = v = 0 at nodes 3
and 4; u = 0 at nodes 7 and 8. The boundary conditions indicated can be
specified thus:

BOUNDARY CONDITION 'EXTERIOR' STRESS
1702 NX -T. NY 1. |

2 TO 3 NX 1. NY -1.

4 TO 5 NX 1. NY -T1.

5T06 NX 1. NY 1.

BOUNDARY CONDITION 'EXTERIOR' DISPLACEMENT
3T704U0.VDO.
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Fig. 5.4. Example to illustrate the use of BOUNDARY CONDITION command.

BOUNDARY CONDITION 'EXTERIOR' MIXED STRETCHING

6 POS
7 UR 0.
8 UR 0.
1 NEG

It may

NR T.
NR 1.
NR T.
NR 1.

ANG 0.
ANG 0.
ANG 0.
ANG 0.

be noted that in the last and fourth last cards above, UR is
not specified. '

7. Loading Specification.

LOADING
NODES [node names]% gm.T_ENS”Yg X Ivd ¥ [v]ZIv,]
UNIFORM FORCE ’

The LOADING command specifies the loading applied to the plate. If
The node
names may be the name of a single node having the specified values, or

there are no loadings, this command must be ignored completely.
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may be a 1ist of nodes (up to ten nodes) having the same specified val-
ues. If the loading at all the nodes are identical, the word UNIFORM
can be used. The load vector can be either an intensity or a concen-
trated force. The three components of the load vector are specified by
v,, vV, and v,- Components not specified will be taken as zero.

Xy

Example:

LOADING
NODES 1 2 3 4 5 INTENSITY X 1.0 Y 2.0
NODES 6 INTENSITY 1.5 2.0
NODES 7 8 9 10 INT Y2.0X1.5

In the bending problem, the present version of the system can pro-
cess a lateral load intensity only if it is linear in x and y. Such a
loading is defined uniquely if the load intensity is specified at three
non-collinear points. This form of specifying such a loading is the
only form acceptable to the system.
Example:
LOADING
NODE 1 INTENSITY Z -1.0
NODE 5 INTENSITY Z -3.0

NODE 14 INTENSITY Z -2.5
In the above example, nodes 1, 5, and 14 must be non-collinear. If

the three points defining the loading are collinear, an error message
will be issued by the system.

If the loading is a uniform load, the following is an acceptable
form:
LOADING
UNIFORM INTENSITY Z 1.0

If the loading is a concentrated force applied at the intersecting
point of two 1ines of symmetry, the acceptable form is:
LOADING
NODE 3 FORCE Z 50.0
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8. Particular Solution Functions for the Bending Problem.

BENDING PARTICULAR SOLUTION

NODES [node names] KX [K ] 51.[Ky] Eﬁl-[wax] KXX‘[Ky’y]

This command is applicable only to the bending problem in which the
particular solution functions KX and Ky or their derivatives Kx X and

E]

Ky y are known. The node names may be the name of a single node having

the specified values, or may be the names of several nodes (up to ten
nodes) having the same specified values.
txample:
BENDING PARTICULAR SOLUTION
NODES 1 4 9 KX 0.0 KY -0.08736
NODES 2 3 8 KX 0.0 KY -0.08190

If particular solution functions are unknown in the bending problem,
standard functions will be constructed by summing a Fourier series,
provided certain limitations in geometry and loading are met (see
Section 5.2). 1In such a case, and when particular solution functions
are not applicable, this command must be ignored completely.

9. Output and Analysis Commands.

NODES

ELEMENTS
FINITE ELEMENT ANALYSIS

OUTPUT ; g quantities

Once all data required to perform an analysis have been supplied,
the output and analysis command can be issued.

Output can be computed at the nodes, at the elements, or both. If
output at both the nodes and elements is requested, two separate OUTPUT
commands designating NODES and ELEMENTS will be required. The quanti-
ties to be printed are different in the stretching and bending problems:
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quantities in the quantities in the
stretching problem bending problem
DISPLACEMENTS FUNCTIONS

STRAINS MOMENTS

STRESSES CURVATURES
PRINCIPAL STRAINS PRINCIPAL MOMENTS
PRINCIPAL STRESSES PRINCIPAL CURVATURES
ALL ALL

ALL denotes that all quantities will be printed. When principal
values (such as strains or moments) are required, the principal direc-
tion is also computed. The direction is computed as the angle swept
from the positive x-axis to the direction of the major principal value
in the positive (counter-clockwise) sense. The ranges of that angle are
from 0 to ©/2 radians and from 37m/2 to 27 radians.

Example:
OUTPUT NODES DISPLACEMENTS PRINCIPAL STRESSES
QUTPUT ELEMENTS ALL

Note. If quantities at a node are required, grid lines parallel to
the axes are passed through all the nodes to effect differentiations
with respect to x and y. (For example, strains are derivatives of dis-
placements.) When a 1line in the grid pattern is formed by only one
node, the approximation to a derivative at that node cannot be made, and
that derivative is taken to be zero. For such nodes, quantities listed
in the output are thus invalid.

The analysis command must be the last card describing any one prob-
Tem to be analyzed.
Example:
FINITE ANALYSIS

For the purpose of understanding the internal working of the PLANAL
System, a user may wish to print out certain arrays used in the process
of analysis. These intermediate print-outs can be effected through the
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use of a number of control parameters in the analysis command described
above. (These parameters were frequently used during development of the
system.) The modigied command format when intermediate print-outs are
also required is:

FINITE ELEMENT ANALYSIS K1 [k] K2 [k,] K3 [ky] K4 [k,] K5 [k K6 [k, -
KT [k;] K8 [kg] K8 [kg] KIO [kl

Any control parameters can be supplied, and in any order. They have the
following meaning:

k] = 1 means to print global stiffness matrices before boundary condi-
tion modification (symmetric: KDIAG, KOFDG, KPPRI; non-
symmetric: FCMAT, IREL1, ICUREL, KPPRI).

k2 = 1 means to print global stiffness matrices after boundary condi-
tion modification.

k3 =1 means to print BDCOND before boundary condition modification.

k4 = 1 means to print BDCOND after boundary condition modification.
k5 = 1 means to print ELSTMT.
6 > 1 means to print KPPRI at each step of solver.

k6 > 2 means to print KPPRI, FCMAT, ICUINT at each step of solver
(applicable only to non-symmetric coefficient matrices).

k7 = 0 means that Kx’ Ky are to be used in forming KPPRI.

k7 = 1 means that KX, Ky are not to be used in forming KPPRI.

X Ky,y are to be used in forming KPPRI.

ko = 3 means that KX, Ky are to be used in boundary correction of par-

k7 > 2 means that KX

ticular solution.
k8 = 1 means that particular solution functions are computed by double
integration with ¢ as a function of x and y.
ko = 2 means that particular solution functions are computed by double
integration with ¢ = 0.5.
> 1 means to print PBSOLN as assembled by system.
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k9 = 2 means to print PBNTEM, KPBSLN, GRIDPR whenever applicable.

k]0 = 1 means to compute load function by Fourier series and print
result.

For a description of the arrays listed, see Appendix D.
Example:
FINITE ELEMENT ANALYSIS K2 1 K10 1

10. Termination Statement.

FINISH

This command requests control to exit from the ICES System of which
PLANAL 1is a subsystem. Therefore, the FINISH command must be placed
after all the cards describing a problem to be analyzed. If there are
more than one problem to be analyzed (requiring more than one FINITE
ELEMENT ANALYSIS commands), the cards describing each problem must be
stacked together, and then one FINISH card is placed after the combined
deck (Fig. 5.5).

A summary of all the PLANAL commands can be found in Appendix B.

5.7. Formation of Input Deck.

An input deck of cards submitted to a computer for execution must
contain a number of control cards in addition to the PLANAL commands
that describe the problem to be solved. These control cards are usually
written in a job control language (JCL). Initial control cards are
placed before the PLANAL commands and final control cards are placed at
the end (Fig. 5.5). These control cards provide information for job
identification, accounting, and Setting up the proper program libraries
for execution. Information to be supplied on these cards depend on the
computer configuration at a particular organization and must be deter-
mined by that organization.

Listed here are the control cards for using the PLANAL System at
the Information Processing Center, the Massachusetts Institute of Tech-
nology at the time when this work was prepared.
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Initial Control Cands:

// SMITH

/*MITID PROB=M1234,PR0G=5678

/*SR1  DEFER

/*MAIN TIME=3,LINES=2

/*SETUP DDNAME=PACK16,UNIT=2314,1D=(234016,,SAVE) ,A=QFM
//JOBLIB DD DSNAME=ICES.LINKLIB,DISP=0LD,VOLUME=(PRIVATE,RETAIN)
// DD DSNAME=ICES.H0,DISP=0LD,VOLUME=(PRIVATE,RETAIN)

// DD DSNAME=ICES.MODULES.STRUDL2,DISP=0LD,VOLUME=(PRIVATE ,RETAIN)
// EXEC ICES

//GO.SYSIN DD *

FLndK Contrnol Cand:

/*
Initial Control Cards
' : N

PLANAL *'PROBI

FINITE ELEMENT ANALYSIS
one or more
PLANAL problems

PLANAL 'PROBN'

FINITE ELEMENT ANALYSIS Y,

FINISH

Final Control Cards

Fig. 5.5. Formation of input deck.




CHAPTER 6

APPLICATIONS OF THE PLANAL SYSTEM

6.1. Introduction.

Examples of applications of the PLANAL System to both the stret-
ching and bending problems are presented in this chapter. Sample input
cards for problems in the examples are listed to illustrate the use of
various PLANAL commands, especially the boundary condition and loading
specifications.

Nodes should be numbered consecutively in such a pattern that the
difference between the node numbers of any two adjacent nodes should be
as small as possible. In this way, the band widths of non-zero entries
in the coefficient matrix of the system equations (2.40) may be mini-
mized. When the nodes of a plate form a rectangular grid pattern, they
should be numbered consecutively in the direction parallel to the shont
side (see Example 6.1). Proper numbering of nodes may save computation
time in solving the system equations by as much as three times or more.

Samples of output from the PLANAL System are also presented. The
boundaries in all the examples are named 'BOUND' in the input.

6.2. Examples in Stretching.

Four examples are included here to illustrate combinations of
different boundary conditions in stretching problems.

Example 6.1. Tension Specimen. Consider a homogeneous, isotropic,
long plate of constant thickness t with dimensions as shown in Fig. 6.1.

100




101

Ny y N,
% J -
©
(aN] - ) el
L [+ . X
N e Nena B
\ —

3a 3a 1
6a " 6a

1 \
N

Fig. 6.1. Dimensions and loading of a tension specimen.

It is subjected to a tensile stress NX applied at the ends. Taking ad-

vantage of symmetry, we need to analyze only the portion of the plate
in the first quadrant which is discretized into triangular elements in
Fig. 6.2. It can be noted that at the region where the sample narrows,
a denser grid is used. The nodes are numbered consecutively along the
shorter grid lines. We now illustrate the PLANAL input for the case

when a = 2 in., t =1 in., E = 10° psi, v = 0.3, and N, = 1 Tb/in.

A sample of input cards to the PLANAL System for the tension spe-
cimen problem is shown in Fig. 6.3 (some cards for NODE COORDINATES and
ELEMENT INCIDENCES which are similar to the ones shown have been omit-
ted). The x- and y-axes are lines of symmetry along which displacements
v and u, respectively, are suppressed. These lines are specified under
a boundary condition of MIXED STRETCHING. Moreover, since u = v = 0 at
node 1, this node is specified under a boundary condition of DISPLACE-
ment. Hence, at node 1 POSITIVE and node 1 NEGATIVE, UR is not spec-
ified under MIXED STRETCHING. =




Example 6.2.

opposite compressive forces P (Fig. 6.4a).
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Cineular Disk Subjected fo Compressive Forces.

the stresses may be found in Timoshenko and Goodier [23].
symmetry, we analyze only the disk in the first quadrant, which is dis-

cretized into triangular elements in Fig. 6.4b.

when a =

1in., E =

10° psi, v = 0.3, and P = 1 1b.

Con-
sider a circular disk of radius a subjected to a pair of diametrically

We analyze the case

Theoretical expressions for
Because of

The portion of the

input cards for the problem pertaining to boundary condition and Tload-

ing specifications

BOUNDARY CONDITION
1 U0.0V 0.0

BOUNDARY CONDITION
1 POS NR
7 NEG UR 0.0 NR
7 TO 28 UR 0.0 NR

6 T0 2 UR 0.0 NR
2 POS UR 0.0 NR
1 NEG NR

are shown below:
'BOUND' DISPLACEMENT

'BOUND' MIXED STRETCHING
0.0 ANGLE 1.5707963

0.0 ANGLE 1.5707963

0.0 ANGLE 1.5707963

0.0 ANGLE 0.0

0.0 ANGLE 0.0

0.0 ANGLE 0.0

Circled are element numbers,

uncircled are node numbers.

35 50 57 62 67 72 77
33 76
3 6 9 15 22 30 75
O®
2 74
10| N8
Rl R ,
1 b 7 12 18 26 39 45 53 58 63 68 73

Fig. 6.2.

Discretization of a quarter of the tension specimen.
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PLANAL °*TENSION® *TENSION SPECIMEN,'®
DEBUG COMMON

PLDEBUG

TYPE PLATE STRETCHING

NODE COORDINATES

1 0. 0. B
2 0. 18
3 0s 2. B
4 1le 04 R
5 le 1l
6 le 2. B
7 2. 08B
8 2. 1,

9 2. 24 8B

10 25 145

19 2.8 2.Nh R

ELEMENT INCIDENCES

1 1 4 2
2 4 5 2
3 3 2 5
4 5 6 3
5 5 4 7
6 7 8 5
7 5 8 6
8 8 9 6
9 712 8
10 12 13 8
11 8 13 10
19 ] 1IN Q

BOUNDARY INCIDENCE

"BOUND® 1

ELEMENT PROPERTIES TYPE tCST?

ALL THICK le EX 100000e¢ PX 063 G 384610538

BOUNDARY CONDITION *BOUND?' DISPLACEMENT

1 U 060 V 060

BOUNDARY CONDITION *BOUND®' MIXED STRETCHING
1 POS MR 00 ANGLE 1.5707963

4 NEG. UR 000 NR 0s0 ANGLE 15707963
4 TO 73 UR 0.0 NR 00 ANGLE 15707963
3 POS UR 0e¢0 NR 0.0 ANGLE 0,0
2 UR 0.0 NR 0e0O ANGLE 0.0
1 NEG NR O0e0 ANGLE 0.0
BOUNDARY CONDITION *BOUND' STRESS
73 TO 77 NX 10 NY 0.0
‘77T TO 3 NX 0.0 NY 0.0

OUTPUT NODES ALL
OUTPUT ELEMENTS ALL
FINITE ELEMENT ANALYSIS

Fig. 6.3. PLANAL input cards for the tension specimen problem.
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BOUNDARY CONDITION 'BOUND' STRESS
28 TO 6 NX 0.0 NY 0.0

LOADING

NODE 6 FORCE Y -0.5

A sample of the output from the PLANAL System is shown in Fig. 6.5.
Theoretical and PLANAL results are compared in Fig. 6.6. |

Example 6.3. Beam on Elastic Foundation. A beam of length 2a and
depth b rests on air elastic foundation and is subjected to a distributed
load Ny over a length of 2c as shown in Fig. 6.7a. We analyze only half

the beam (Fig. 6.7b) because of symmetry. We consider the case when a

16 in., b =1 dn., c =4 in., E = 10° psi, v = 0.3, and N, = 10* 1b/in.

[i]

If we take the stiffness coefficients of the elastic foundation as Kxx

- _ & 1 gs s .
ny ny Kyy 3 x 107 1b/in./in., then the input cards for boundary

condition are:

BOUNDARY CONDITION ‘BOUND' ELASTIC

1 TO 33 KXX 30000.0 KXY 30000.0 KYX 30000.0 KYY 30000.0
BOUNDARY CONDITION ‘BOUND' STRESS

33 TO 10 NY 0.0

10 TO 2 NY -10000.0 :

BOUNDARY CONDITION 'BOUND' MIXED STRETCHING

2 TO 1 UR 0.0 NR 0.0 ANGLE 0.0

The shape of the deformed beam is shown in Fig. 6.7c. [ ]

Example 6.4. Rectangular Plate with Edge Beam. A homogeneous,
isotropic plate considered as a deep beam is simply supported as shown
in Fig. 6.8a. Its lower edge is attached to an edge beam of cross-
sectional area Ab’ and its upper edge is subjected to a distributed load

p. Because of symmetry, we analyze only half the plate (Fig. 6.8b).
The behavior of the plate is dependent on the ratio of Young's Moduli
for the plate and the edge beam, denoted by Ep and Eb’ respectively. We

now consider the case when a =12 in., b = 8 1in., Ab = 0.955 in.z, Ep =

10° psi, E, =3 x 10° psi, v = 0, and p = 1 1b/in.

In preparing input cards for the problem, displacements at the sup-
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a. Dimensions and Toading.

Yy
. 12 .
5 23
L 27
3 30
5 ‘ 29
1 7 13 19 2 287 %

b. Discretization of a quarter disk.

Fig. 6.4. Circular disk subjected to compressive forces.
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PLANAL *DISK* YDISK WITH CONCENTRATED FORCES.®

HAA AR AR A A AAK K * AR AR AR
* *
* 1CES PLANAL *
* THE PLAYE ANALYSIS LANGUAGE *
* *
* MODIFICATION O *
* SEPTEMBER, 1969 #
* *
* 2382316 8721769 *
* *

Aok e Ao o o o KRR K o o OO SR o ok kOl
TYPE PLATE STYRETCHING
NODE COORDINATES
1 0.0 0.08

2 A A A2~

wEkx  dxak RESULTS  #okkk sk

NODAL DISPLACEMENTS

NODE u v
1 0.0 0.0
2 .0 ~0.,2246E-05
3 0.0 -0 .4755E-05
4 0.0 -0.7885E~05
5 0.0 ~0.12326~04
6 0.0 ~0.1944E-04
7 0.119%~05 -0.3917E~12
~ vmeaeang ~0.191T7E~05

*% GRID PATTERN FOR DIFFERENT IAT [ON.

LINES PARALLEL TC X-AXIS.

6 NODES. 1 7 13 19 24 28
6 NODES. 2 8 14 20 25 29
A NCRES . 3 aQ 15 2 2k an

LINES PARALLEL TO Y-AXIS.

6 NODES. 1 2 3 4 5 6
6 NODES. 7 8 9 10 11 12
6 NNDFS. 11 e 18 1A 17 1R

* NOTE »*

WHEN A LINE IN THE GRID PATTERN FOR OUFFERENTIATION (SEE AROVE)} TS FORMED
BY ONE NODE, THE APPROXIMATION TO A DERIVATIVE AT THAT NODE CANNOT BE MADE.
THAT DERIVATIVE IS TAKEN TC BE ZERO. FOR SUCH NODES, QUANTITIES LISTED BELCW
ARE THUS INVALIOD.

NODAL STRAINS ANC PRINCIPAL STRAINS

NODE EX EY GAMMA-XY » El £2 THETA~] (X TN El)
1 0.6595€-05 ~(Q.1058E-04 ~0.2161E~ll 0.6535E-05 ~0.1058E-04 6.283 RAD = 1359 D 59 M 59,12
2 0.7101E~05 -0.1189E~04 0. 1040E-05 0. 71156-05 =~0.1190F-04 0.027 RAD = 1 N34 M 4,83
3 0.7886E~05 ~0.1410E~04 0.3012E-05 0.7989E-05 —0.1420E-04 0.068 RAD = 30 5 M 3,23
4 0.9065E~05 ~0.1892E~04 0. 7835E-05 0.9603E~-05 ~0.1945E-04 0.137 RAD = T D 49 M 16.57
- N.RL1RE-05 ~0.2BB88E-04 0.2177E-04 0.1108BE~04 -D.3184E-04 0.266 RAD = 15D 14 M T.44
n.n ~0.4228E-04 0.0 RAD = 0D 0M 0.0
HGAMMA-XY = 2 FXY N ANT RAD = 0 D 25 M 10.89
R L k]
NODAL STRESSES END PRINCIPAL STRESSES
NDDE $X SY S XY £31 $2 THETA-1 (X T3 S}
1 0.3760E 00 ~-0,9450E 00 -0.8312F~07 0.3760E 0C =~0.945CE G0 6,283 RAD = 359 D 59 M 59,12
2 0.3884€ 00 -0.1072E 01 Ca4001E~01 0.389%€ 07 -0.1073F 01 0.027 RAD = 1D 3% 4 4,83
3 0.4019€E 00 -0,1289 01 0. 1158 00 0. 4098E 0% -0.1297E 01 J3.268 RAD = 3054 3.23
4 0.3725€ 00 -0.1780F 01 0.3013€ 00 0,4139E 00 ~N.,1821F 01 0.137 RAD = T D 49 M 16,57
5 ~0.6004E-01 ~0.2906E Ol 0. 8372 00 0.168CE 00 ~=0.3134F 01 0.266 RAD = 15 D 14 M T.44
& ~0.1394E 01 ~0.4646E 01 0.0 ~0.1384F 01 ~Q.4646E Ol 0.0 RAD = 00 0 M 0.0
A 2797F NN -0 .8535E 0Q 0,307 RAD = 0D 25 M 10.89
ELEMENT STRAINS ANC PR INC IPAL STRAINS
EL EMENT EX EY "GAMMA—XY% £1 E2 THETA-1 (X YD F1)
1 0.5976E-05 -0.1123E-04 =0.1958E~11 0.5976E-05 ~0.11226-04 6.283 RAD = 359 D 59 M 59.12
2 0.6216F~05 -0.9585€-05 0.1887E-05 0 6272E~05 =0.9641E~05 0.059 RAD = 3 026 M 17.30
3 0. 5216E~05 ~0.1254E-04 0.1647E-05 0.6252F-05 ~0.1258E-04 0.044 RAD = 20D A0 M 32,37
4 0.6504E~05 ~0,1001E-04 0. 4467E~05 C.6R01F~05 ~0,1031F-04 0.132 RAD = T D3 M TN2
5 Q. 6504E-05 ~0.1565E-04 0.,4179E~05 0.6699E-05 ~0.1585E-04 0.093 RAD = 50D 20 M 25.2
6 0. 664TE~05 ~0.1064E-04 049333E~05 Q.7826F~0% ~0.11R2F-04 0.247 RAD = 14 0 10 M 49.5
7 0.6647E-05 ~0.2218F-04 0.9190F-05 0.7362E~05 -0.22R9E-04 0.154 RAD = & N S0 M 29,25
~ vAAnc oAl N G1a3R-NG ~0.1492F-04 0.454 RAD = 25 N 59 M 43.74
ELEMENT STRESSES AND PRINCIPAL STRESSES
ELEMENT SX SY SXY St s2 THETA-1 (X 70 S
1 C.2864E 00 -0.1037E 01 ~0.7532E-07 0.2864F NC 0.0 64283 RAND = 359 D 59 M §9,12
2 0.3671E D0 ~0.84B4E 00 0.7257E~01 0,2909F 00 -D.1383E-01 0.059 RAD = 3D 24 M 17,30
3 0.2696F 00 ~0.1173E Ol 0. 6334E~01 0.2838% 0C ~0.1414E-01 0.044 RAD = 2 D30 M 32,37
4 0. 3848E 00 ~C.8855E 00 0.1718E€ 00 0.4503E 00 ~0.6555€-01 0.132 RAD = TN MM T.Q2
5 0.1987€ 00 ~0.1506E 01 0.1607E 00 %.2883F 0N ~0,A961€-01 0.093 RAD = 5 020 M 25,20
& N.2T7A4E NN =N.ARN4LFE NO n.sanF an N.RAKRAF NN =N .2VA3F AN N. 247 #AN = 14 N 1A M40 .68

Fig.6.5. A sample of PLANAL output for the circular disk problem.

NNV DA nnnn NV n

AN NN AN
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Stresses along the axes of circular disk
subjected to compressive forces.
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port are suppressed, and a "dummy" edge beam is specified along the
boundary portion that has no edge beam. A MIXED STRETCHING boundary con-
dition is superimposed along the 1ine of symmetry. The resulting input
cards are:

BOUNDARY CONDITION 'BOUND' DISPLACEMENT

7U0U0.0V 0.0

BOUNDARY CONDITION 'BOUND' EDGE BEAM

1 T0O 7 EB 3000000.0 AB 0.955

7 TO 45 EB 0.0 AB 0.0
45 TO 40 EB 0.0 AB 0.0 NY -1.0
40 TO 1 EB 0.0 AB 0.0

BOUNDARY CONDITION 'BOUND' MIXED STRETCHING
40 TO T UR 0.0 NR 0.0 ANGLE 0.0
A finite difference solution is obtained by Rosenhaupt [22] for the

above problem which he considers a masonry wall with a reinforced con-

crete foundation beam acting as a tension tie. Stresses Oy Gy’ ny and

major principal directions S]T obtained from PLANAL and [22] are listed
in Table 6.1 in which the nodes are as named in Fig. 6.8b. The same
stresses are plotted in Fig. 6.9 for comparison. The two sets of results
are very close except along the free edges since constant strain trian-
gular elements are used in PLANAL. ®

6.3. Examples in Bending.

First, two short examples are given to illustrate plates in pure
bending and pure twist. Then, in six examples following, rectangular
plates with various aspect ratios are analyzed for different edge condi-
tions and loadings. Results from PLANAL are compared with the theoreti-
cal values tabulated in Timoshenko and Woinowsky-Krieger [24].

Example 6.5. Rectangularn Plate in Pure Bending. A rectangular
plate of thickness h (Fig. 6.10a) is placed in a state of pure bending
by prescribing, along the boundary, displacement w and edge rotation 8

+ 61 is measured from the x-axis to the direction of the major

principal stress.
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Table 6.1. Stresses and Principal Directions in Plate with Edge Beam.
oxt/p cyt/p oxyt/p 6 (degrees)
Node
PLANAL | [22] PLANAL | [22] PLANAL | [22] PLANAL| [22]
1 0.271 | 0.08 -0.032| 0.0 -0.0721 0.0 -12.4 0.0
2 0.136 | 0.130 0.119 | 0.0 -0.023 | 0.051 | -34.6 0.0
3 1-0.003¢ 0.125 { -0.097 | 0.0 0.096| 0.177 31.9 0.0
4 {-0,017 | 0.113 0.176 | 0.0 0.346| 0.427 52.8 0.0
51 -0.039{ 0.085 | -0.077 | 0.0 0.8291 1.216 44.3 0.0
6 | -0.069 -0.784 | 0.0 2.004 39.9 0.0
7 1 -0.115| 0.0 3.975 | -9.000 3.542 60.0 0.0
8 0.153 -0.784 3.093 40.7
9 0.153 | 0.0 -4.325 3.368{ 0.0 28.2 0.0
10 | -0.321 | -0.34 -0.129 0.062| 0.0 73.7 0.0
11 | -0.360 | -0.320 | -0.118; -0.105 0.0831 0.075 72.7 | 72.6
12 1 -0.442 | -0.411 | =0.213 | -0.125 0.273| 0.251 56.3 | 58.6
13 | -0.655 | -0.599 | -0.347 | -0.363 0.579| 0.531 52.5 | 51.3
14 | -0.640 | -0.788 | -1.101 | =1.250 0.908| 1.095 37.9 | 39.0
15 | -0.270 | 0.0 -6.841| -5.255 1.0481 0.0 8.8 0.0
16 | -0.576 | ~0.56 -0.298 -0.013| 0.0 -87.4 0.0
17 | -0.567 { -0.543 } -0.332| -0.300 0.1041 0.109 69.2 | 69.1
18 | -0.617 | -0.587 | ~-0.407 | -0.402 0.339| 0.341 53.6 | 37.4
19 | -0.550 | -0.627 | -0.749 | -0.721 0.572| 0.612 40.1 | 42.8
20 | -0.475 | -0.532 | -1.543| -1.533 0.688| 0.788 26.1 | 28.8
21 | -0.574 | 0.0 -2.956 ] -3.086 0.644| 0.0 14.2 0.0
22 | -0.578 | -0.60 -0.533 -0.003] 0.0 -86.5 0.0
23 | -0.584 | -0.575 | -0.539 | -0.539 0.113] 0.115 50.6 | 49.4
24 1 -0.531 | -0.556 | -0.658 | -0.649 0.320] 0.338 39.4 | 41.7
25 | -0.464 | -0.479 | -0.926 | -0.945 0.490| 0.519 32.4 | 32.9
26 | -0.261 ) -0.240 | ~1.408 -1.376 0.434} 0.512 18.5 | 21.0
27 0.130( 0.0 -1.941 | -1.981 0.256 0.0 6.9 0.0
28 { -0.560 | -0.52 -0.745 -0.011{ 0.0 3.3 0.0
29 | -0.528 ] -0.536 | -0.749 | -0.760 0.094| 0.096 20.2 | 20.3
30 | -0.472 | -0.479 | -0.833| -0.836 0.255} 0.266 27.4 | 18.2
31 | -0.336 | -0.350 | -0.994| -1.008 0.332] 0.360 22.6 | 23.8
32 | -0.162 | -0.164 | -1.247 | -1.218 0.284| 0.304 13.8 | 15.0
33 | -0.036| 0.0 -1.356| -1.354 0.092| 0.0 4.0 0.0
34 | -0.536 | -0.53 -0.897 0.012] 0.0 2.0 0.0
35 | -0.514{ -0.530 | -0.910| -0.923 0.059| 0.060 8.4 8.6
36 | -0.425| -0.450 | -0.932| -0.952 0.144| 0.161 14.8 | 16.3
37 | -0.285| -0.295 | -1.015| -1.014 0.188] 0.199 13.6 | 14.5
38 | -0.136| -0.120 | -1.100| -1.081 0.127] 0.143 7.4 8.4
39 0.019| 0.0 -1.092| -1.057 0.007| 0.0 0.4 0.0
40 | -0.711| -0.70 -1.008| -1.000 { -0.015| 0.0 -3.0 0.0
41 | -0.641 | -0.679 | -1.037| -1.000 0.004; 0.0 0.5 0.0
42 | -0.477 | -0.526 | -1.008| -1.000 0.052| 0.0 5.5 0.0
43 | -0.266 | -0.277 | -0.994| -1.000 0.026{ 0.0 2.0 0.0
44 { -0.0841| -0.057 | -0.999| -1.000 0.007{ 0.0 0.5 0.0
45 0.047| 0.0 '-0.939] -1.000 § -0.073| 0.0 -4.0 |- 0.0
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Fig. 6.10. Rectangular plate in pure bending and pure twist.

of the form
=cC (Xz + .yz):

=
!

(6.1)

™w
1]

- W
N’

where ¢ is an arbitrary constant. The resulting bending stress couple M
is constant throughout the plate and is given by

Eh3c

M= - m. (6.2)
The twisting couple Mxy is identically zero.

Analyzing only a quarter of the plate (Fig. 6.10b), we take a = 6

in..b=44n., h=14n., c =0.1, E = 10°

of w and 8 along the boundary can be computed from (6.1). In this case,
if we specify only w and 8, the stress functions will be indeterminate.

psi and v = 0.2. The values

Hence, we also specify a quantity dual of a rigid body displacement.
The input cards for boundary conditions are:
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BOUNDARY CONDITION 'BOUND' DISPLACEMENT

1 WO0.0 RO.0 :
4 W 0.225 R 0.0
7 NEG W 0.900 R 0.0
7 POS W 0.900 R 0.6
8 W 1.000 R 0.6
9 NEG W 1.300 R 0.6
9 POS W 1.300 R 0.4
6 W 0.625 R 0.4
3 NEG W 0.400 R 0.4
3 POS W 0.400 R 0.0
2 W 0.100 R 0.0
BOUNDARY CONDITION 'BOUND' FUNCTION
4 U 0.0V 0.0
BOUNDARY CONDITION 'BOUND' MIXED BENDING
9 POS CHI 0.0 ANGLE 0.0
6 UR 0.0 CHI 0.0 ANGLE 0.0
3 NEG CHI 0.0 ANGLE 0.0
Stress couples from PLANAL are MX = My = -2083 1b~-in./in. and Mxy
= 0 at all nodes, which are in agreement with theoretical values. [ ]

Example 6.6. Rectdnguka& PLate in Pure Twist. The plate in Exam-
ple 6.5 may be placed in a state of pure twist by prescribing along the
boundary w and 8 of the form

W = CXY,

(6.3)

B=-w .
,N

The resulting bending stress couple is identically zero and the twisting
couple is given by |

M, = - Enc (6.4)
Xy 12(1+)° )
Proceeding as in Example 6.5, we obtain from PLANAL M, = M = 0 andAMva

= - 694.4 1b-in./in. at all nodes, which are in agreement with theoreti-
cal values. ]

Example 6.7. A Uniformly Loaded Long PLate. A long plated fixed
at its ends is subjected to a uniformly distributed load p (Fig. 6.11a).
When b is small compared to a, the plate behaves 1ike a fixed-ended beam.
A statically equivalent load may be supplied in the form of an effective




115

"
4 ”
b
a s
a
Z p /
IR EREENENREEREEN
A4 ’X

a. Plan and elevation.

b4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

'
36
e

|
N

3 5 7 9 11 13 15 17 19 21 23 2527 29 31

b. Discretization.

Theoretical
% PLANAL

\\\\\y Line of
symmetry

o [ =
Y P
N

~— ’
7%~ x‘§-\m—--”“-——m

c. Moments along the x-axis.

Fig. 6.11. A uniformly loaded long plate.
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edge shear Q = %-pb applied along the two free edges. The plate is dis-

cretized as shown in Fig. 6.11b and the values of a-= 16 in., b = 1 1in.,
p =1 psi are taken in the PLANAL analysis. Input cards for boundary
conditions are:
BOUNDARY CONDITION 'BOUND' FIXED SUPPORT
33 T0 34

270 1
BOUNDARY CONDITION 'BOUND' STRESS

1 70 33 Q -0.5
34 T0 24Q -0.5

The moments from PLANAL are plotted in Fig. 6.11c and they compare

closely with the theoretical values. 2

Example 6.8. Rectangularn Plates with Simply Supported Edges. A
homogeneous, isotropic rectangular plate is simply supported along its
edges (Fig. 6.12). Cases with different aspect ratios (a : b) and under

different loadings are analyzed in the PLANAL System for E = 105 psi and

v = 0.3.

g Uniform load

load

o

nojoe

|
~oj

Fig. 6.12. Dimensions and loadings of a rectangular plate.
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Uniform Load. When the plate is under uniform load, the coordinate
axes are lines of symmetry; therefore, only the first quadrant of the
plate is analyzed. We take b =1 in. and q = 1 psi, and the aspect
ratios a/b of 1T and 2, using a 4 x 4 grid shown in Fig. 6.13. The input
cards for boundary conditions and loading are:

BOUNDARY CONDITION ‘BOUND' SYMMETRY

1 T0 21

5T0 1
BOUNDARY CONDITION 'BOUND' SIMPLE SUPPORT
21 70 5

LOADING
UNIFORM INTENSITY Z 1.0

The bending particular solution functions K and Ky, and q (for checking)

at each node are constructed internally by the system, and the results
for a/b = 1 are shown in Fig. 6.14. A sample of the output from the
system for a/b = 1 is shown in Fig. 6.15. Results for both aspect
ratios are shown in Fig..6.16.

5 0 15 20 _ 25 5 10 15 20 25 30 35
I 2y L \\\\ 3L
3 23 3 33
2 22 2 32

1 6 11 16 21 1 6 11 16 21 26 31

4 x 4 Grid 6 x 4 Grid

5 10 15 20 25 30 35 40 L5

y \\\\ Lk
AN

3 43

2 42

1 6 11 16 21 26 31 36 ul
8 x 4 Grid

Fig. 6.13. Grid patterns in rectangular plates.
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BENDING PARTICULAR SOLUTION CONSTRUCTED FROM FOURIER SERIES.

MAXIMUM MAXIMUM
SUMMATION LOAD FUNCTION SUMMAT ION
NODE KX = KY INDEX { FOR CHECKING) INDEX
1 ~-C.6190E-05 17 £.9757E 0C 51
2 -0.5857E~05 7 0.937SE CO 51
3 -C.4817E-05 11 . 0. 1005E C1 51
4 -0.2935E~-05% 13 C+G863E CO 51
5 0.0 1 0.5312FE-06 1
6 -G.5857E-05 7 T.$879F 00 51
7 ~-C.5550E-05 13 0.1000E C1 51
8 ~C.4569E-05 9 Q.1017E C1 ' 51
9 -0.2800E-05 13 0.S986F 00 51
1C 0.0 1 C.4ICBE-06 1
11 -0.4817E~05 11 . 0.1C0C5E 01 51
12 ~0.4569E-05 9 0.1C17E ¢1 51
13 -C.2804E-05 17 C.1035E 21 51
14 -0.2375F=05 11 C.101¢E 01 51
15 G.C 1 Ce3756E-C6 1
16 -0.2935E-05 13 0.G9863E (0 51
17 . =0.28CCE-Q0S 13 0.9986FE 0OC 51
18 —C.2375E-C5 11 C.1016E Q1 51
19 ~C.1531E-C5 23 0.9971E QO 51
20 0.0 1 0.2033E-06 1
21 0.0 1 G.5312E~06 1
22 C.0 i Co4308E—-06 1
23 G0 1 0.3756E-06 1
24 C.C 1 G.2033E-06 1
25 0.0 1 0 1741E-12 1

Fig. 6.14. Particular solution functions for a quadrant of
a uniformly loaded rectangular plate.

Hydrostatic Load. When the plate is under a hydrostatic load which
varies linearly in x, the x-axis is the line of symmetry. Half of the
plate is analyzed, with b =1 in. and qo = 1 psi. The grids for aspect
ratios a/b of 0.5, 1, and 2 are the 4 x 4, 8 x 4, and 8 x 4 grids, re-
spectively, in Fig. 6.13. The inbut cards for loading when a/b = 1 are:
LOADING

NODES 1 5 INTENSITY Z 0.0
NODE 25  INTENSITY Z 1.0

The results are presented in Fig. 6.17.
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#% BENDING PARTICULAR SOLJUTICN CONSTRUCTED FROM FNURIER SERIES.

MAXIMUM

SUMMATION
NODE KX = KY INDEX
1 ~C.6190E~05 17
2 -0,5857E~05% 7

dodokk K&k RESULTS  #%hs

NODAL STRESS FUNCTIONS

NODE U v

1 0.¢ 0.C

2 ~0.2031E-08 =~0.3089€-02
3 ~0.3926E~08 =0.5991F-02
4 -0.5319E~08 -0.8116E~02
5 ~0.6001E-08 =~0.9157E-02

%% GRID PATTERN FOR DIFFERENTIATION.

L INES PARALLEL TO X-AXIS.

5 NCODES. 1 6 11 16 21
5 AODES. 2 T 12 11 22
~ ® 131 18 23

LINES PARAL‘EL TC Y-~AXIS.

5 NODES. 1 2 3 4 5
5 NODES. 6 1 8 9 10
snee 1 1712 14 15

NODAL MCMENTS AND PRINCIPAL MCMENTS

NODE MX ) MY

1 0.480BE-01  0.4808E-01
2 0.4576E-01  0.4554E-01
3 0.37276-01  0.3904€-01
4 0.2227E-01  C.2484E-C1
5 ~0.398CE-02  0.1914E~08

MAXTMUM
LOAD FUNCTION SUMMAT TON
(FOR CHECKING} INDEX
0.9757€ 00 51
0.9879E CO 51
SoinnEe v 51
sededed
MXY M1 M2
0.1259E-07 0.4808E-01 0.4808E-01
0.9313E-04 0.4579E-01 0.4550E-01
-0.4265£~03 0.3914E-01 0.3718E-01
0.8573€-03 0.2510E-01 0.2201E-01
~0.1460E~02 0,4784E-03 —0.4459E~C2

NODAL CURVATURES AND PRINCIPAL CURVATURES

NODE CHI-X CHI-Y

1 0.4039€~05 0.4029E-05
2 0.3852E-05 C.3817E~05
3 0.3068E~-05 0+3343E~05
4 0.1779€E-05 €.2179€~05
5

~0.477T6E-06 Q.1433E-C6

NODAL MOMENTS - HOMOGENEOUS, PARTICULAR,

NCOE MXH MXP

1 -0,2561E-01 0.73€69E~01
2 ~0.2396E-01 0.6972E-01
3 -0.2007E-01 0.573%E-01
4 ~0.1266E~01 0.3494E-01
5 -0.398CE-02 G.0

~ s Amacom

ELEMENT MOMENTS ANLC PRINCIPAL MCMENTS

ELEMENT MX My
1 Q.4671E-01 0.45C4E-01
2 0.4504E~01 0.4671E-01
3 0.4124E-01 0.4126E-01
4 0.3827E-01 0.4151£~-01
5

0.3116E~01 G.3060E-01

e na A 3m1acony

CHI-XY

0.1964E~11
0.1453E-07
-0.6653E-07
0.1337E~06
-0.2278E-06

R T et}
AND TOTAL.
MX

0.4808E-01
0.4576E-01
0.3727¢-01
0.2227€-01
~0.3980E-02
" 4SKR4E=01

MXY

~-0.8320E-03
-0.8320£-03
~0.8320E-03
-0.4583E-02
~0.5907E~02

-n YeaTroNnD

ELEMENT CURVATURES AND PRINCIPAL CURVATURES

ELEMENT CHI~X CHI-Y
1 0.3683E-05 C.3724E-05
2 0.3724E-05 0.3983E~05
3 0.3464E~05 Ce3466E-05
4 0.3098E-05 0.3603E~05
5 0.2638

5 0.2550€~05

ELEMENT MOMENTS - WOMCGENEOUS, PARTICULAR, AND TOTAL.

ELEMENT N XH MXP
1 ~0.2312E-01 0.6983E-01
2 ~0,2479E-01 0.6983E-01
3 —0,2314E-01 0.6438E-01
4 -0.210CE-01 0.5927E-01
5 ~0.1719E-01 0.4836E-01
- eAme oAy
FINISH
GOOD-BYE

CHI-XY

~0.1298E~06
~0.12%8E-06
~0.1298E-06
~0.7150E~06
~-0.9215€E~06

MX

0.4671E-01
0.4504E-01
0.4124E~01
0.3827£-01
0.3116E-01

A 2LaTe-m

AARTIATOY

CHI-1

€.4039E-05
0.3857E-05
0.3358E-05
0.2219E-05

0.2179E~06
A _3QETRE~NE.

MYH

~0,2561E~01
=-0.2419E-01
-0.1831E-01
~0.1010E~01

0.1914E-08
-0.2396E-01

M1

0.4705E-01
0.4705E~01
0.4208E-01
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Fig. 6.15. A sample of PLANAL output for a bending problem.
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Example 6.9. Square PLate with Fixed Edges. A square plate (Fig.
6.12) with fixed edges is subjected to a uniform load q. Only a quarter
of the plate is analyzed, using a 4 x 4 grid (Fig. 6.13). For the values

of a=b=11n., E=10° psi, v =0.3, and q = 1 psi, the input cards

for boundary conditions and loading are:

BOUNDARY CONDITION 'BOUND‘ SYMMETRY

1 T0 21
5T0 1
BOUNDARY CONDITION 'BOUND' FIXED SUPPORT
21 T0 5
LOADING
UNIFORM INTENSITY Z 1.0
The results are plotted in Fig. 6.18. a
T T T3 g:jjq |
M O Ref. [24] ’
_57 | ——*—— PLANAL LT et v
ga a 2
2| 7 4
0.02 x al 9 p X
p "L-e /b/// ;
a a
2 1.2

o

0 0.25 \\\\ 0.50
Y -
x\\\\ Along y 0

-0.02

-0.04 \\

X
O
Fig. 6.18. Bending moments of a square plate with fixed edges
under uniform load, v = 0.3.
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Exampfe 6.10. Square Plate with Two Edges Simply Supported and Two
Edges Fixed. A homogéneous, isotropic square plate is simply supported
along the edges parallel to the y-axis and fixed along the others (Fig.
6.12). It is subjected to a uniform load and we analyze the first quad—

rant of the plate fora=b =1 in., E = 105 psi, v = 0.3, and g = 1 psi.
Using the 4 x 4 grid in Fig. 6.13, the input cards for boundary condi-
tions are:

BOUNDARY CONDITION 'BOUND' SYMMETRY

170 21 ‘
5T0 1
BOUNDARY CONDITION 'BOUND' SIMPLE SUPPORT
21 TO 25
BOUNDARY CONDITION 'BOUND' FIXED SUPPORT
25 T0 5
The results are plotted in Fig. 6.19. P
. _ ::iq
®  Ref. [24] }; y ;&
——x— PLANAL = sz
M a
Z2
qa
| 2 x
0.02 & —— z e
\ 5 5
x\\\\\\ 2 2
0 0.5 ~_ 0050 L
Along §-= 0 x\\\\
-0.02
A |
0.02 u I
wo | ‘ %
X Along §-= 0
s | |
qa .
0 0.25 0.50 %

Fig. 6.19. Bending moments of a square plate with two edges
simply supported and two edges fixed, v = 0.3.
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Example 6.11. Rectangular Plate with Three Edges Simply Supported
and One Edge Fixed. A homogeneous, isotropic rectangular plate shown in
Fig. 6.12 is fixed along the edge x = a/2 and simply supported along the
others. It is subjected to a uniform load and a hydrostatic load that
varies linearly in x. The x-axis is the line of symmetry, and we analyze

half the plate for b = 1 in., E = 10° psi, and v = 0.3.

Unigorm Load. We consider the aspect ratios a/b of 0.75 and 1
(using the 6 x 4 and 8 x 4 grids, respectively, in Fig. 6.13) for q = 1
psi. The input cards for boundary conditions when a/b = 1 are:
BOUNDARY CONDITION 'BOUND' SYMMETRY
1 T0 41
BOUNDARY CONDITION 'BOUND' FIXED SUPPORT
41 TO 45

BOUNDARY CONDITION ‘BOUND' SIMPLE SUPPORT
45 T0 1

The results ére shown in Fig. 6.20.

Hydnostatic Load. We analyze the case when a = b =1 in. and qo =
1 psi (8 x 4 grid used), and the results are plotted in Fig. 6.21.

Example 6.12. Rectangular Plates Under Central Loads. A homoge-
neous, isotropic plate is subjected to a concentrated load P applied at
the center (Fig. 6.22a). Because of symmetry, only the first quadrant
of the plate is analyzed. The quadrant is discretized in two patterns
(Fig. 6.22b): Grid A has a uniform mesh and grid B has a finer mesh at

the load point. The plate is analyzed for b =1 in., E = 105 psi, v =

0.3, and P =1 1b.

Simply Suppornted Edges. The case when all edges are simply sup-
ported are analyzed for aspect ratios a/b of 1 and 2, and using both
grids A and B. The input cards for boundary conditions and loading for
grid B are:

BOUNDARY CONDITION 'BOUND' SYMMETRY

1 T0 30

14 70 1

BOUNDARY CONDITION 'BOUND' SIMPLE SUPPORT
30 TO 14

LOADING

NODE 1 FORCE Z 1.0
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Fig. 6.20. Bending moments of rectangular plates with three edges simply
supported and one edge fixed under uniform load, v = 0.3.
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Fig. 6.21. Bending moments of a square plate with three edges simply
supported and one edge fixed under hydrostatic load, v = 0.3.

The results are shown in Fig. 6.23.

Fixed Edges.
aspect ratios a/b of 1 and 2, and using both grids.

shown in Fig. 6.24.

The case with all edges fixed is also analyzed for

The results are

It can be seen that results from grid B with the finer mesh approach
the approximations at the vincinity of load point.
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Fig. 6.22. Rectangular plates under central loads.
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6.4. Computation Time.

Computation time required for execution in the PLANAL System is
studied in a sample of 21 problems. These problems were executed on the
IBM 360/65 computer at the Information Processing Center, Massachusetts
Institute of Technology in August, 1969. Most of the examples in the
previous sections are included in this sample.

Total execution time (time elapse between entry into and exit from
PLANAL) depends on the number of nodes, number of elements, boundaryk
conditions, and other factors. A reasonably simple time study is to
plot total execution time versus the total number of nodes. Such a plot
for the sample taken is shown in Fig. 6.25.

Execution time for assembling the global coefficient matrix is de-
pendent on both the number of elements and number of nodes. Modifica-
tion for boundary conditions takes between two and six seconds in the
sample.  Execution time for solution of the system equations is approx-
imately proportional to the square of NSOL, the number of nodes without
completely prescribed displacements or stress functions. The solution
operation takes between 0.4 and 13.7 seconds. When the construction of
particular solution functions is required, it takes about (1 + 0.055n)
seconds, where n is the total number of nodes.

On the same computer, a sample of nine plate bending problems are
executed in the STRUDL System [18] using flat plate triangular elements
termed 'CPT'. Total execution times for this sample are also plotted
in Fig. 6.25. A STRUDL bending problem is solved by a displacement meth~
od with three unknowns per node, whereas a PLANAL bending problem fis
solved by a force method with two unknowns per node. While the time
difference may not be entirely due to the difference in the numbers of
unknowns, the former apparently takes longer to solve than the latter hav-
ing the same number of nodes.

In addition to the total execution time, there is an overhead of
about 20 seconds per job submitted to the computer. It takes 10 seconds
for control to reach ICES and another 10 seconds to reach PLANAL (or

STRUDL).
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Fig. 6.25. Computation times for samples of PLANAL and STRUDL problems.




CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

7.1. Conclusions.

The dual finite element method for analysis of plate structures is
implemented into the PLANAL System. The present form of the system is
capable of solving problems of plate stretching and bending (Section
5.2). : 4
In the stretching problem, the system can analyze an arbitrary
plate under arbitrary loading. Results are obtained in the form of nod-
al displacements, from which strains and then stresses are computed.
These results are in good agreement with theoretical values when they
are available.

In the bending problem when particular solutions are known, or not
required at all, the system can analyze an arbitrary plate under arbi-
trary loading. When particular solutions are not known, standard pro-
cedure is implemented into the system to generate such solutions for
linear loadings and rectangular plates. Results are obtained in the
form of stress functions at the nodes, from which moments and curvatures
are computed. In the examples studied, results from the system agree
closely with theoretical values. Since two unknowns per node are taken
in this method, shorter computation time in solving the system equations
is realized when compared to a displacement method in which three un-
knowns per node are taken.
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Programming capabilites of the Integrated Civil Engineering System
are utilized in the PLANAL System. Features of a problem-oriented lan-
guage, unrestricted problem size, and efficient programming management
are the resuits of using ICES. The advantages of ICES in the develop-
ment of structural analysis systems are demonstrated.

Parallel algorithms are implemented to perform a number of opera-
tions when the global coefficient matrix is symmetric and when it is
non-symmetric. These operations are the assemblage of the global coef-
ficient matrix, modification for boundary conditions, and solution of
the system equations.

7.2. Recommendations.

Constant strain triangular elements are used in the development of
the dual method in the system. Higher order elements, such as linear
strain triangles, may be added to improve the analysis capabilities.

In addition to the boundary conditions that can be processed by the
present system, a few more may be included, such as: dislocations in
multiply-connected plates in stretching; edge beam and elastic boundary
in bending. Algorithm for obtaining deflections in the bending problem
may be implemented into the system through integration from the computed
curvatures.

Standard procedures for obtaining particular solutions in the bend-
ing problem for plates with arbitrary geometry and loading may be inves-
tigated further. Elias suggests that a finite element method with one
unknown moment per node may be used [10].

The dual finite element method is formulated for the plate stretch-
ing and bending problems in this work. The method may be readily ex-
tended to shallow shells as well as shells approximated by flat triangu-
lar elements.
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APPENDIX A

NUMERICAL APPROXIMATIONS

When computations of certain quantities are made in the PLANAL
System, numerical differentiation, integration, and interpolation are
approximated by Lagrangian methods [13]. For example, nodal strains
may be obtained from nodal displacements through differentiation. Using
Langrange's interpolation formula of second degree, we obtain the follow-
ing approximations for a function f having ordinates f], f2, f3 at SE
Xos X35 respectively (Fig. A.1).

f parabolic
approximation

Fig. A.1. Function approximated by a parabola.
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Numerical Differentiation.

2dy + d, dy +dy dq

frix) = - a;1a;‘:faET'f1 * *a;ag"'f - HEKH;‘Ifagj'fa’

Numerical Integration.

f Xo d(2d; + 3d,) dy(dy + 3d,) d]3
f dx = .+ £ .
1 17 % 5 S(d 7 4,
3
X9 6d](d] + d2) 1 6d] 2 6(d] ¥ dzy

Numerical Interpolation.
fx) =23 e S, %1%
d1(d] + dzi 1 d1d2 2 dzid] + d25 3

where ei =X - Xi‘




APPENDIX B

SUMMARY OF PLANAL COMMANDS

A summary of all the commands in PLANAL are listed here for user' s
reference. These commands are explained in detail in Chapter 5.

1. Paoblem Initiation.
PLANAL ['name'] ['title']

ALL g

DEBUG ECOMMON

PLDEBUG

2. Type Specification.

PLATE STRETCHING

leave blank
TYPE gPLATE BENDING ;

SYMMETRICAL
NONSYMMETRICAL

3. Unit Peclaration.

INCHES, FEET, FT, CENTIMETERS, CM, or METERS

POUNDS , LB, KIPS, TONS, KILOGRAMS, KG, or MTON
UNITS { RADIANS, or DEGREES

FAHRENHEIT, or CENTIGRADE

SECONDS, MINUTES, or HOURS
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4, Geometrny and Topology.
NODE COORDINATES

BOUNDARY €

[node name] X [v, ] X,[Vy] ;leave blank

ELEMENT INCIDENCES
[eTement name] [node 1] [node 2] [node 3]

BOUNDARY INCIDENCES

[boundary name] [node name]

5. Element Properties Specification.
ELEMENT PROPERTIES TYPE [ 'type']
[element name 1ist] THICKNESS [Vt] EX_[veX] EX_[vey] -

PX [v, 3 PY [vy T ETX [v, 1 CTY [v, ] 6 [v ] DENSITY [v,]

6. Boundary Condition Specification.

(1) BOUNDARY CONDITION ['boundary name'] DISPLACEMENT
[boundary portion] g_[vu] M_[vv] y_[vw] B-[Vr]

(2) BOUNDARY CONDITION [ 'boundary name'] STRESS
[boundary portion] NX [v . ] ﬂx_[vny] Q_[vq] MLv.I-
ROTATION [v,]

(3) BOUNDARY CONDITION [‘'boundary name'] MIXED STRETCHING
[boundary portion] gﬂ_[vur] NB_[vnr] ANGLE [va]

(4) BOUNDARY CONDITION [ 'boundary name'] ELASTIC
[boundary portion] g§_[vu51 y§-[vvs] EKK-[kax] E&X_[vkxy] -

(5) BOUNDARY CONDITION ['boundary name'] EDGE BEAM
[boundary portion] NX [v 1 ﬂx_[vny] EB [v 1 AB [v,] IZ [v,]
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(6) BOUNDARY CONDITION [ 'boundary name'] STRAIN
[boundary portion] EPSILON [v_] CHI [v_.] ROTATION [v,]

(7) BOUNDARY CONDITION [ 'boundary name'] FUNCTION
[boundary portion] g_[vu] y_[vv]

(8) BOUNDARY CONDITION ['boundary name'] MIXED BENDING
[boundary portion] UR [v ] CHI [v_] ANGLE Cv,d

(9) BOUNDARY CONDITION ['boundary name'] SIMPLE SUPPORT
[boundary portion]

(10) BOUNDARY CONDITION ['boundary name'] FIXED SUPPORT
[boundary portion]

(11) BOUNDARY CONDITION [ 'boundary name'] FREE
[boundary portion]

(12) BOUNDARY CONDITION ['boundary name '] SYMMETRY
[boundary portion]

7. Loading Specification.

LOADING |
NODES [node names]) {INTENSITY) y (v Y v ZIv,]
UNIFORM FORCE

8. Parnticuwlar Solution Functions forn the Bending Problem.
BENDING PARTICULAR SOLUTION
NODES [node names] KX [K.1 KY [K /T KX [K, .1 KYY [k, 1
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9. Output and Analysis Commands .

DISPLACEMENTS FUNCTIONS
STRAINS MOMENTS
NODES STRESSES CURVATURES

QUTPUT % I_E_I___E_MENTS$ PRINCIPAL STRAIN ( ©°F ¢ PRINCIPAL MOMENTS
PRINCIPAL STRESSES PRINCIPAL CURVA-
ALL TURES

ALL

(in stretching) (in bending)

- FINITE ELEMENT ANALYSIS

10. Temwmination Statement.
FINISH




APPENDIX C

COMMON MAP

The COMMON map of the PLANAL System is presented in this appendix.
ICES requires that all variables used in the Command Definition Blocks

(programs written in CDL) and all dynamic arrays must appear in COMMON.

The relative addresses and the displacements (both in hexadecimals

and decimals) from the beginning of COMMON of all such variables and
When the mode of a variable [16] does not conform
to the FORTRAN convention of naming a variable, it will be so indicated:

arrays are listed.

D = double word, H = half word integer, R = real variable. A dynamic

array base pointer is indicated by P. Remarks or brief definitions of

the variables are also given.

system are also shown.

Dummy areas which are not used by the

Rel. Displacement

Name Add.

Hex. Dec.

I1CES COMMON POOL

QQbUBI(1) 1
QabuB(2) 2
1COM 3
IERROR 4
IcoML 5
QQCOMI( 1) 6

(]

0

o
QQRCOM(75) 8

000
004
008
oocC
010
014

13C

0000
0004
0008
0012
0016
0020

®
0316

Remarks

146




Add.

81

°

@
116
117

¢

®
152
153

]

e
171
173

L]
180
181

182
183

184

236
237

239
241
243
245

247
249
251
253

255

140

1CcC
1DO

L)
25C
260

@

2A8
2B0O

2CC
2D0

2D4
2D8

2DC

L3
3AC
380

388
3C0
3Cs8
3D0

3D8
3E0
3ES8
3F0

3F8

Rel. Displacement
Hex. Dec.

SCRATCH COMMOM POOL

0320

[
0460
0464

0604
0608

0680
0688

0716
0720

0724
0728

0732

®
0940
0944

0952
0960
0968
0976

0984
0992
1000
1008

1016
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Remarks

DUMMY e

DUMMY o

NOs OF NODES AT WHICH DISPLACEMENTS
ARE NOT FULLY PRESCRIBED.

NOes OF PRESCRIBED DISP. COMPONENTS.
NOe. OF INDEPENDENT LOADING.
CONDITIONS

DUMMY «

DUMMY o

SEMIBANDWIDTH OF HYPERCOLUMNS OF
COEFFICIFNT MATRIX.

BIT PICTURE OF COEFFICIENT MATRIX,
DIAGONAL SUBMATRICES OF COEF. MAT,
OFF-DIAGe SUBMATRICES OF COEF. MAT.
NON-ZERO SUBMATRICES OF EACH ROW OF
COEFFICIENT MATRIX.

RIGHT-HAND MEMBERS OF MATe. EQ.
NON-SYMMETRIC COEFe MATRIX ELEMENTS.
NON-ZERO ROWS IN EACH COLUMN OF
NON-SYMMETRIC COEFa MATRIXe.
NON-ZERO COLUMNS IN EACH ROW OF
NON=-SYMMETRIC COEFe MATRIX.
INVERSE USE OF ICURELe

NON-DICTIONARY COMMON POOL

Name

11

136
T1

e
T36
D1 D
D10O D
NSOL
NDIS
NLDSI
IBAND P
1FDT P
KDIAG PD
KOFDG PD
IOFDG PH
KPPRI PD
FCMAT PD
ICUREL P
IREL1 P
ICUINT P
ISCAN

257

262
263

400

414
418

1024

1044
1048

DUMMY o

[
DUMMY
SCANNING MODE INDICATOR.




148

Rel. Displacement
Name Add. Hex. Dec. Remarks

264 41C 1052 DUMMY,

265 420 1056 DUMMY,

266 424 1060 DUMMY.
1DUMP 267 428 1064 INDICATOR FOR INTERMEDIATE OUTPUT.
IPOOL 268 42C 1068 SIZE OF DATA POOL.

269 430 1072 DUMMY,

@ o [ L4
315 4E8 1256 DUMMY,

CFLEN 316 4EC 1260 CONVERSION FACTOR FOR LENGTH.
CFWT 317 4F0 1264 CONVERSION FACTOR FOR WEIGHT.
CFANG 318 4F4 1268 CONVERSION FACTOR FOR ANGLE.
CFTEMP 319 4F8 1272 CONVERSION FACTOR FOR TEMPEATURE.
CFTIME 320 4FC 1276 CONVERSION FACTOR FOR TIME.

321 500 1280 DUMMY.

330 524 1316 DUMMY,
DICTIONARY COMMON POOL

LDID PD 331 528 1320 LOADING NAMES,
333 530 1328 DUMMY.
LEXTN 334 534 1332 TOTAL NOe. OF LOADINGS.
LTYP P 335 538 1336 LOADING TYPE.
337 540 1344 DUMMY,
LDLIST P 338 548 1352 LOADING LIST,.
LDTLE PR 340 54C 1356 LOADING TITLES.
JTID PD 342 554 1364 NODE NAMES.
344 55C 1372 DUMMY.
JEXTN 345 560 1376 TOTAL NOe. OF NODES.
JTYP PH 346 564 1380 . NODE TYPE.
348 56C 1388 DUMMY.
349 570 1392 DUMMY.
350 574 1396 DUMMY.
JTXYZ PR 351 578 1400 NODE COORDINATES.
JTLOD PR 353 580 1408 NODAL LOADSe.
IDLDND PH 355 588 1416 EXTe NOo OF NODES WITH SPECe LOAD.
LODTYP 357 590 1424 GENERAL LOADING TYPE.
358 594 1428 DUMMY.

® L3 ® [ )

399 638 1592 DUMMY,

NJ 400 63C 1596
401 640 1600 DUMMY.
NLDS 402 644 1604 NO. OF ACTIVE LOADING CONDITIONS.
JF 403 648 1608 NO. OF DEGREES OF FREEDOM.
ID 404 64C 1612 PROBLEM TYPE.

405 650 1616 DUMMY.

[ L4 [} [




Name

JINT
JEXT

ELID
ELTYP
ELPROP
ELTOP
ELOADS
ELTOP]
TUNIPR
NDPROP

NBXTEL
NBEL
NSYM
NGEN
ELSTDE
ELSTDG
ELSTCT
ELSTDS
ELSTPO

ELSTMT
NODI sP
VALUEN
VALUEE
GRIDPR
KODOUT
GRID

KPBSLN
IDEBUG
IPROB
IBCON

BDID

BOCOND
PBNTEM
- PBSOLN
PBSOLE
RINTND

Rel. Displacement
Add. Hex. Dec.

409 660 1632
PH 410 664 1636
PH 412 66C 1644
414 674 1652

L 3 L] [

(4 e ®

439 6D8 1752

PD 440 6DC 1756
P 442 6E4 1764
P 444 6EC 1772
PH 446 6F4 1780
P 448 6FC 1788
PH 450 704 1796
452 70C 1804

PR 453 710 1808
455 718 1816

L] ® e

463 738 1848
464 T73C 1852
465 740 1856
466 T44 1860
467 748 1864
468 T74C 1868
469 750 1872
470 754 1876
471 758 1880
472 75C 1884
473 760 1888
474 764 1892

475 768 1896 .

476 76C 1900

P 477 770 1904
PR 479 778 1912
P 481 780 1920
P 483 788 1928
P 485 790 1936
P 487 798 1944
PH 489 TA0 1952
PH 491 7A8 1960

493 T7BO 1968
494 7B4 1972
495 TB8 1976
D 496 78BC 1980
498 TC4 1988
500 7CC 19956
502 7D4 2004
504 7DC 2012
506 TE4 2020

T VUV UV
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Remarks

DUMMY »

ARRAY IN CORRESPONDENCE WITH JEXT.
LOCATION OF NODES IN MATRIX EQ.
DUMMY «

DUMMY o

ELEMENT NAMES.

ELEMENT TYPE.

ELEMENT PROPERTIES,

NODE INCIDENCE ON ELEMENTS.

ELEMENT LOADS,

ELEMENT INCIDENCE ON NODESe.
INDICATOR FOR UNIFe EbLe PROPERTIES,
NODE PROPERTIES,

DUMMY o

L 3

DUMMY ,

TOTAL NO. OF ELEMENTS.

NO. OF ACTIVE ELEMENTS.

SYMMETRY INDICATOR.

GENERAL INDICATOR.,

STANDARD YOUNG'S MODULUS.

STANDARD SHEAR MODULUS.

STANDARD COEFe OF THERMAL EXPANSION
STANDARD DENSITY.

STANDARD POISSON'S RATIO.

DUMMY «

DUMMY o

DUMMY &

DUMMY ,

ELEMENT STIFFNESS.

NODAL DISPLACEMENTS.

OUTPUT VALUES AT NODES.

OUTPUT VALUES OF ELEMENTS.
PROPERTIES OF GRID LINESs

CODE FOR OUTPUT.

GRID PATTERN OF NODESe

TEMPORARY ARRAY FOR PARTICULAR SOL.
INDICATOR FOR DEBUGGING.

PROBLEM PHASE INDICATOR.

NOs OF CLOSED BOUNDARY CURVES.
BOUNDARY NAMES.

BOUNDARY CONDITIONS.

TEMPORARY ARRAY FOR PARTICULAR SOL.
NODAL VALUES OF PARTICULAR SOLUTION.
ELEMENT VALUES OF PARTICULAR SOL.
NODAL LOAD INTENSITY,
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Rel. Displacement

Name Add. Hex. Dec. Remarks

RFORND P 508 7EC 2028 NODAL LOAD FORCE,

IPRTIC 510 7F4 2036 INDICATOR FOR PARTICULAR SOLUTION.
ILOADN 511 7F8 2040 TYPE OF NODE LOAD (INTe. OR FORCE).

BDPOS PH 512 7FC 2044 BOUNDARY POSITION OF NODES.
514 804 2052 DUMMY, '
515 808 2056 DUMMY,

TEMOUT PH 516 80C 2060 CODE FOR TEMPORARY OUTPUT.




APPENDIX D

DATA STRUCTURE

The definition and structure of the data used in the PLANAL System
is presented in this appendix. A1l arrays defined here are dynamic
arrays which must appear in COMMON (as compared with dimensioned arrays)
unless specified otherwise. Some scalar quantities in COMMON are also
defined here (others are defined in Appendix C). The arrays and scalars
are listed alphabetically for easy reference.

Each node, element, or boundary of a structure has both a name
and an external number. A name is used for identification by the user
and can be alphameric. An external number is an integer assigned by
the system to a node, element, or boundary according to the order of
their appearance in the input. Separate sets of consecutive integers
starting from 1 are assigned to the nodes, elements, and boundaries.

In addition, each node is assigned an internal number according to the
position of the unknowns related to that node in the system equations.

BDCOND Three level full word array to store the boundary conditions
(B.C.).
DEFINE BDCOND,1,POINTER,STEP = 1
DEFINE BDCOND(I),10,POINTER,STEP = 10
DEFINE BDCOND(I,J),5,STEP = 5
where I = external number of a boundary;
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BDID
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J = order of nodes in counter-clockwise direction around
the boundary starting with the node specified in the
'BOUNDARY INCIDENCE' command.
The boundary values to be entered to the third level (indicated
by K) are assembled according to the type of boundary condition
encountered (Table A.1).
BDCOND(I,J,1) = external number (EN) of the boundary node N
considered,

BDCOND(I,J,2) = code for stretching B.C. at negative side of N,
BDCOND(I,J,3) = code for stretching B.C. at positive side of N,
BDCOND(I,J,4) = code for bending B.C. at negative side of N,
BDCOND(I,J,5) = code for bending B.C. at positive side of N,

Boundary values (n = 3,4,...,19):

BDCOND(I,J,2n) = boundary value at negative side of N,
BDCOND(I,J,2n+1) = boundary value at positive side of N.
The code for B.C. is cumulative so that more than one B.C. that
exist at a node can be indicated. The types of B.C. are:

(1) displacement,

(2) stress,

(3) elastic,

(4) edge beam,

(5) mixed stretching,

(6) strain,

(7) function,

(8) mixed bending,

(9) simple support,

(10) fixed support,

(11) free,

(12) symmetry.

Two level double word array to store the alphameric name of a
boundary, number of nodes on the boundary, and processing infor-
mation.




Table A.1. Data Structure of BDCOND.
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Value of K

Type of Boundary Condition

~~

Displacement

ot
N

~ Stress

w Elastic

)

~ Edge beam

)

o Mixed stret.

3 Function

[

E§ Mixed bend.

Simple supp.

P
w
St®

Fixed supp.

(10)

Free

P
]
—d

S

Symmetry

—~
oy
N

e

m
=

™
=

aa]
=

m
=

m
=

EN

g

oo

16

ed

64

128

256

512

1024

2048

us

NX

EPS

WO O YO W |~

VS

NY

CHI

KXX |

EB

ROT

KXY

AB

KYX

1Z

KYY

ROT

UR

UR

NR

CHI

ANG

ANG




BDNORM

BDPOS

ELEXT

ELID

ELPROP
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DEFINE BDID,1,POINTER,STEP = 1

DEFINE BDID(I1),3,DOUBLE
where I is the external number of the boundary.
BDID(I,1) = name of boundary,
BDID(I,2)
BDID(I,3)

number of nodes on boundary,

indicator for necessity to re-process boundary as a
stretching problem in an actually bending problem.
Necessary if > 1. Set in STHBOU.

Two level full word array to store boundary normals.
DEFINE BDNORM,IBCON,POINTER

DEFINE BDNORM(I),J
where J = number of nodes on current boundary.
Defined in HPSSLS. Constructed if ISSLSB > 1.

One level half word array to store boundary position of nodes on

boundary.

DEFINE BDPOS,JEXTN,HALF

BDPOS(I) = boundary position, where I is the external number of
a node. Defined and constructed in STHTCE.

One level half word array to store external numbers of elements.
DEFINE ELEXT,NBEL,HALF

One level double word array to store the alphameric identification
of an element.
DEFINE ELID,10,DOUBLE,STEP = 10

Two level full word array to store element properties.
DEFINE ELPROP,10,POINTER,STEP = 10

DEFINE ELPROP(I),13
where I = external number of an element.




ELSTMT
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ELPROP(I,1) = element type name,

ELPROP(I,2) = thickness,

ELPROP(I,3) = area,

ELPROP(I,6) = Young's modulus in x-direction,
ELPROP(I,7) = Young's modulus in y-direction,
ELPROP(I,8) = Poisson's ratio in x-direction,

ELPROP(I,9) = Poisson's ratio in y-direction,
ELPROP(I,10) = coefft. of therm. exp. in x-direction,
ELPROP(I,11) = coefft. of therm. exp. in y-direction,
ELPROP(I,12) = shear modulus,

ELPROP(I,13) = density.

Three level full word array to store the lower elements of the
local stiffness matrix of each element.

DEFINE ELSTMT,NBEL,6,JF*JF

A typical element is ELSTMT(I,J,K). The external number of an
element is indicated by I. The 6x6 element stiffness matrix of
each element I is partitioned by nodes. Because of symmetry,
only the lower submatrices numbered (indicated by J) are stored:

1
2 3
4 5 6

The matrix elements of each submatrix J are stored in the follow-
ing order (indicated by K):

bl

The structure of ELSTMT for each element I can be summarized by
indicating the last two subscripts of the matrix elements

in their positions in the element stiffness matrix:




ELTOP

ELTOP1

FCMAT
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(1,1 1,2

1,3 1.4

2,1 2,2 3,1 3,2

2,3 2,4 3,3 3,4

4,1 4,2 5,0 5,2 6,1 6,2
4,3 4,4 53 54 6,3 6,4 |

Two level half word array to store node incidence on the elements.
DEFINE ELTOP,10,POINTER,STEP = 10
DEFINE ELTOP(I),6,HALF

where I = external number of an element.

ELTOP(I,1) = total number of nodes in the element,

ELTOP(I,n) = node incidence in counter-clockwise direction
(n=2, ..., 6), with two nodes repeated for con-
venience.

Two level half word array to store element incidence on the nodes.

DEFINE ELTOP1,JEXTN,5,HALF,STEP = 5

ELTOP1(I,1) = total number of elements incident on a node,

ELTOP1(I,n) = elements incident on the node (external numbers
used), n =2, 3, ...,

where I = external node number.

Defined and constructed in STHTCE.

Three Tevel double word array to store non-symmetric global
coefficient matrix.
DEFINE FCMAT,NJ,5,POINTER,STEP = 5

DEFINE FCMAT(I,J),4,DOUBLE
In FCMAT(I,J,K), the matrix elements (indicated by K) are stored
in the following order:

o

Defined in STHNAS,HNSASS,HNSLAS ,STHSAS.




GRID

GRIDPR

IBCON

D

IDUMP
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Three level half word array - to store the rectangular grid
pattern of the nodes. External numbers of the nodes are used
for identification.

DEFINE GRID(I),J,K,HALF

~ where I designates the axis to which the grid Tines are parallel

(1=x,2=y),

J is the number of lines in a direction,

K: first element contains the number of nodes of line J,
subsequent elements contain the external number of the
nodes ordered in positive x- or y-direction.

Defined in STHGRI.

Three level full word array to store the properties of a grid
line used in STHPIR.
DEFINE GRIDPR(I,J),4

GRIDPR(I,J,1) = type of grid line,

GRIDPR(I,J,2) = type of end condition combination,
GRIDPR(I,J,3) = I-coordinate of first node,
GRIDPR(I,J,4) = I-coordinate of last node.

Defined and constructed in STHPIR.

Scalar - number of closed boundary curves bounding the plate.
Scalar - indicator for problem type.

10: plate stretching,

11: plate bending,

12: general.

Scalar - indicator for intermediate output.
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ICUINT Two level half word array - an inverse use of ICUREL.

ICUREL

IDLDND

DEFINE ICUINT,NSOL,5,HALF,STEP = 5

ICUINT(I,1) = the hyper-column position K at which hyper-row I
in the banded region* of global stiffness matrix
starts,

ICUINT(I,n) = position of submatrix(I,J) of the global stiffness
matrix in FCMAT(I), n =2, 3, ...,

where (k-1) + (n-1) = J.

Defined and initialized in STHNSL.

* The banded region is defined such that the
first entry (column position) of any row
cannot be greater than that of any subsequent
row. This situation is shown in the diagram.

Two level half word array to contain information on the row
structure of the non-symmetric global coefficient matrix.
DEFINE ICUREL,NJ,5,HALF,STEP = 5
ICUREL(I,1) = number of non-zero submatrices in hyper-row I,
ICUREL(I,n) = position (hyper-column number) of FCMAT(I,n-1)

in the global stiffness matrix, where n = 2, 3, ....
Defined and initialized in STHNAS.

One level half word array to contain external number of nodes at
which loads are specified when special loading applies. For
example, "planar" distributed load is defined by Toad intensities
at three nodes.

DEFINE IDLDND,5,HALF,STEP = 5

IDLDND(1) = number of such "special loading" nodes,

IDLDND(n) = external numbers of these nodes, n =2, 3, ....
Defined in STHLOD.




ILOADN

I0FDG

IPROB

IPRTIC

IREL1T
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Scalar - indicator for type of load applied at node (code is
cumulative). Set in STHLOD.

1: load intensity,

2: Tload force.

Two level half word array to contain information on the row

structure of the symmetric global coefficient matrix.

DEFINE IOFDG,NJ,6,HALF,STEP = 5

IOFDG(I,1) = number of non-zero submatrices to the left of the
diagonal in row I,

IOFDG(I,n) = position (hypercolumn number) of the non-zero
submatrices in the array KOFDG (n = 2, 3, ...).

Scalar - indicator of problem phase.

0: stretching problem,

-1: bending problem,

2: general problem (both stretching and bending).

Scalar - indicator of the type of particular bending solution

specified by the user.

0: particular solution not given,

1: nodal values of particular solution specified or computed,
2: area integral of particular solution specified in PBSOLE.

IPRTIC is set to 1 in STH2FS so that KPPRI can be computed in

STHBLV.

Two level full word array to contain the bit picture of the non-
symmetric global coefficient matrix.

DEFINE IRELT,NJ,I,HALF

where I = (NJ+31)/32

First level denotes the position of a hyper-column of global
coefficient matrix.

Defined and initialized in STHNAS.




ISCAN

ISSLSB

IUNIPR

JEXT

JEXTN

JF

JINT
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Scalar - scanning mode indicator.
1: normal execution of programs,
2: execution inhibited.

Scalar - indicator for the presence of simple support or line of
symmetry boundary conditions in bending.

0: not present,

>0:. present.

Scalar - indicator for uniformity of thickness and material prop-
erties in all elements.

0: not uniform,

1: wuniform.

One level half word array to store information for location of
nodes in the system equation. External numbers of the nodes
are used for storage. Nodes are assigned contiguous locations
in the order of their appearance in the input. Nodes without
complete restraints fill the array downwards starting from the
top; nodes with complete restraints fill the array upwards from
the bottom.

DEFINE JEXT,NJ,HALF

Scalar - total number of nodes in plate.

Scalar - number of degrees of freedom. For the PLANAL System,
JF = 2.

One level half word array assembled in correspondence with JEXT.
If the number i is stored in location j of JEXT, then the number
j 1s stored in location i of JINT.

DEFINE JINT,NJ,HALF




JTID

JTXYZ

JTYP

KDIAG

KODOUT

161

One level double word array to store the alphameric identifica-
tion of a node.
DEFINE JTID,10,DOUBLE,STEP = 10

Two Tevel full word array to store ccordinates of nodes.
DEFINE JTXYZ,10,POINTER,STEP = 10
DEFINE JTXYZ(I),2
where I = external number of node.
JTXYZ(I,1) = x-coordinate,
JTXYZ(1,2) = y-coordinate.

One level half word array to indicate the type and status of a
node. The code is cumulative.

DEFINE JTYP,10,HALF,STEP = 10

Before calling STHTCE, boundary nodes have code of 2; after
calling STHTCE, such nodes have code of 4. After calling HSTORE,
nodes with prescribed displacements or stress functions have code
of 2 (also updated in HPSSLS for nedes with implied FUNCTION
boundary condition).

Two level double word array to contain the diagonal submatrices
of the symmetrical global coefficient matrix.
DEFINE KDIAG, NSOL, JF*JF, DOUBLE

One level half word array to contain code for selective output.
KODOUT( 1)

cumulative code for element in stretching,

KODOUT(2) = cumulative code for element in bending,
KODOUT(3) = cumulative code for node in stretching,
KODOUT(4) = cumulative code for node in bending,
KODOUT(5) = 1234, if output at elements is required,
KODOUT(6) = 1234, if output at nodes is required.

Defined in STHOUT.




KOFDG

KPBSLN

KPPRI

LEXTN

LODTYP

NBEL

NBXTEL
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Three Tevel double word array - to contain the non-zero lower
half off-diagonal submatrices of the global stiffness matrix.
DEFINE KOFDG,NJ,5,POINTER,STEP = 5
DEFINE KOFDG(I,J),JF*JF,DOUBLE
where I = internal number of a node,
J = order of non-zero submatrix, whose position in the
matrix is indicated by array IOFDG.

Two Tevel half word array to contain information during con-
struction of particular solution functions in bending.
DEFINE KPBSLN,NJ,2,HALF

KPBSLN(I,1) = condition in x-direction of Ky,

DPBSLN(I,2) = condition in y-direction of Kx’

0: KX or Ky not computed yet,

1: Kx or Ky computed.

Defined in STHBPS.

Also defined in STHIFS for another temporary use.

Two level double word array to contain the right-hand members
of the system equations.
DEFINE KPPRI,NJ,JF,DOUBLE

Scalar - total number of loadings.

Scalar

indicator for type of loading specified.
1: Toad intensity specified at each node,

2: Tload force specified at each node,

3: uniform load intensity specified,

4: uniform load force specified.

Set in STHLOD.

Scalar - number of active elements.

Scalar - total number of elements.




‘NDPROP

NJ
NLDS
NLDSI

NODISP

NSOL

NSYM
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Two level full word array to contain properties of plate at

nodes .

DEFINE NDPROP,NJ,6

NDPROP(I,1) = thickness,

NDPROP(I,2) = Young's modulus in x-direction,
NDPROP(I,3) = Young's modulus in y-direction,
NDPROP(I,4) = Poisson's ratio in x-direction,

NDPROP(I,5) = Poisson's ratio in y-direction,
NDPROP(I,6) = shear modulus.
Defined and constructed in STHGEN only when IUNIPR = 0.

Scalar - number of active nodes.
Scalar - number of active loading conditions.
Scalar - number of independent Toading conditions.

Two level full word array to store the computed nodal values
of displacements or stress functions.

DEFINE NODISP,JEXTN,?2

NODISP(I,1) = U,

NODISP(I,2) = V.

where I = external number of a node.

Scalar - number of nodes at which displacements or stress
functions are not fully prescribed.

Scalar - indicator for symmetry of global coefficient matrix.
1: symmetric,

>1: non-symmetric.

Set in STHBOU,STHINI.
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PBNTEM Two Tlevel full word array for temporary storage in constructing
particular solution functions at the nodes.
DEFINE PBNTEM,NJ,8
PBNTEM(I,1) = effective distance in x-direction,

PBNTEM(1,2) = effective distance in y-direction,
PBNTEM(I,3) = K

PBNTEM(I1,4) = Kx,yy’

PBNTEM(I,5) = K .

PBNTEM(1,6) = K, .,

PBNTEM(I,7) = Ky’

PBNTEM(I,8) = Kx'

Defined in STHBPS.

PBSOLE Two level full word array to store the element centered values
of the particular solution functions KX and Ky.
DEFINE PBSOLE,NBXTEL,POINTER
DEFINE PBSOLE(I),2
where I = external number of the element.
PBSOLE(I,1) = Kx’

PBSOLE(I,2) =

i
~
“

PBSOLE(I,3) =

1
-~

PBSOLE(I,4) = Ky,y'

PBSOLN Two level full word array to store nodal values of the particular
solution functions Kx and Ky. Nodes ordered according to ex-
ternal numbers.

DEFINE PBSOLN,JEXTN,POINTER

DEFINE PBSOLN(I),2

where 1 = external number of the node.
PBSOLN(I,1) = K.,




RFORND

RINTND

TEMOUT

VALUEE
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PBSOLN(I,2) = K,
PBSOLN(I,3) = K .
PBSOLN(I,4) = K, .,

Defined in STHPAR,STHIFS.

Two level full word array to store load forces at nodes.
External numbers used for nodes.
DEFINE RFORND,JEXTN,3

RFORND(I,1) = force in x-direction,
RFORND(I,2) = force in y-direction,
RFORND(I,3) = force in z-direction.

Defined in STHLOD.

Two level full word array to store load intensities at nodes.
External numbers used for nodes.

DEFINE RINTND,JEXTN,3

RFORND(I,1) = intensity in x-direction,

RFORND(I,2)
RFORND(I,3) = intensity in z-direction.
Defined in STHLOD.

]

intensity in y-direction,

One level half word array to store the parameters controlling
intermediate output of arrays.

DEFINE TEMOUT,10,HALF,STEP = 5

TEMOUT(n) = Kn,for n=1,...,10.

K1,...,K]0 are defined under output and analysis commands in

Section 5.6.

Two Tevel full word array to store the output quantities at the
elements according to Table A.2.
DEFINE VALUEE,NBXTEL,15
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VALUEN Two level full word array to store the output quantities at the
nodes according to Table A.2.
DEFINE VALUEN,NJ,17

Table A.2. Data Structure of VALUEE and VALUEN.

VALUEE VALUEN
Dat Dat

Tover | (1) (2) (3) [{ava; | (M (2) (3)
* * * *

1 €y My My 1 €y My My
2 ey M; M; 2 V,x V,x V,x
I R A S Yy Uy Uy
4 ay Xy X 4 ey M; M;
> | 9y Xy Ky A A Y
6 Ixy Xxy- Xxy 6 % Xx Xx
7 € M1 M] 7 Uy Xy Xy
8 €9 M2 M2 8 ny Xxy Xyy
9 8 6] 6] 9 € M1 M]
10 e X X 10 €, M2 M2
11 0o X2 X2 11 64 e] ‘ 6]

p
12 MX 12 o X1 X
p

13 My 13 Ty X2 Xo
= P

14 MX M; MX 14 MX
= M* 5 MP

15 My My My 1 v
16 Mx = M; MX

= M* M

17 My My y

(1) Stretching problem.
(2) Bending problem when particular solution is not involved.
(3) Bending problem when particular solution is involved.




APPENDIX E

LOAD MODULES DOCUMENTATION

The Toad modules of PLANAL are documented by 1isting the input to
SETGEN. SETGEN 1is one of the steps in computer operation when load
modules are formed from source and object decks of subprograms (sub-
routines). Input to SETGEN provides all the required information for
module formation. The input is to be punched in the first six card
columns, left-justified, in the order as shown under the heading "input
to SETGEN." Remarks (not to be punched) are added here to describe the
function of each input card. The remarks indicate the name and structure
of the load module, the entry and non-entry points, and the subprograms
with COMMON and those without. Wherever numbers are used in the input,
a format of I2 is required. The functions of the load modules are also
stated.

STHBCM

FUNCTION

THIS MODULE INITIATES THE MANAGEMENT OF BOUNDARY COND-
ITIONSe IT SETS UP THE RIGHT-HAND SIDE OF THE GOVERNING
SYSTEM OF SIMULTANEOUS EQUATIONS CONTRIBUTED BY EXTERNAL
LOADS.

INPUT TO

SETGEN REMARKS

NODECK

PLANAL NAME OF SUBSYSTEMe

SIMPLE STRUCTURE OF LOAD MODULE.
STHBCM NAME OF LOAD MODULEe.
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1 NO. OF SUBPROGRAMS WITH COMMONs TO BE ENTRIES.
STHBCM NAME OF SUCH SUBPROGRAM.
6 NOo. OF SUBPROGe WITH COMMONs TO BE NON-ENTRIES.
HATAN NAME OF SUCH SUBPROGRAMs
HPHI NAME OF SUCH SUBPROGRAM,
NEXNOD NAME OF SUCH SUBPROGRAM,
STHAVG NAME OF SUCH SUBPROGRAM.
STHBLV NAME OF SUCH SUBPROGRAM.
STHSLV NAME OF SUCH SUBPROGRAM,
0 NO., OF SUBPROGRAMS wW/0 COMMONs TO BE ENTRIES.
2 NOo OF SUBPROGe W/0O COMMONs TO BE NON-ENTRIES.
AND , NAME OF SUCH SUBPROGRAM.
LCDBLE NAME OF SUCH SUBPROGRAM.
*%EOF
* * * * *
STHBEN
FUNCTION

THIS MODULE CONTAINS THE DICTIONARY SUBPROGRAM IN PLATE
BENDING (STHBEN)s WHICH LEADS TO THE PROPER SUBPROGRAM IN AN
OVERLAY STRUCTURE THAT PROCESSES ONE OF THE BOUNDARY COND-
ITIONS.

INPUT TO
SETGEN REMARKS
NODECK
PLANAL NAME OF SUBSYSTEMe.
SIMPLE STRUCTURE OF LOAD MODULE.
STHBEN NAME OF LOAD MODULEs
1 NC., OF SUBPROGRAMS WITH COMMONs TO BE ENTRIES,
STHBEN NAME OF SUCH SUBPROGRAM.
6 NOs OF SUBPROGe WITH COMMONs TO BE NON=ENTRIES.
HATAN NAME OF SUCH SUBPROGRAM.
HPHI NAME OF SUCH SUBPROGRAM.
NEXNOD NAME OF SUCH SUBPROGRAMs
STHBDI NAME OF SUCH SUBPROGRAM,
STHFFB NAME OF SUCH SUBPROGRAM.
STHSLB NAME OF SUCH SUBPROGRAM.
o NO», OF SUBPROGRAMS W/0 COMMONs TO BE ENTRIES,
1 NO., OF SUBPROGe W/O COMMONs TO BE NON-ENTRIES.
AND NAME OF SUCH SUBPROGRAM.
¥%*EOF
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STHBKS

FUNCTION

THIS MODULE IS CALLED AFTER THE UNKNOWNS OF THE GOVERN-
ING SYSTEM OF SIMULTANEOUS EQUATIONS HAVE BEEN SOLVED.
STRAINS AND STRESSESs OR STRESS COUPLES AND CURVATURESs ARE
THEN COMPUTED BY BACK-SUBSTITUTION. OUTPUT SUBPROGRAMS ARE
ALSO INCLUDED

INPUT 70O

SETGEN REMARKS
NODECK
PLANAL NAME OF SUBSYSTEMs
SIMPLE STRUCTURE OF LOAD MODULEe.
STHBKS NAME OF LOAD MODULE,

1 NO. OF SUBPROGRAMS WITH COMMONs TO BE ENTRIES,
STHBKS NAME OF SUCH SUBPROGRAM.

6 NOe OF SUBPROGe WITH COMMONs TO BE NON-ENTRIES.
DE1BUG NAME OF SUCH SUBPROGRAM.
HCODE NAME OF SUCH SUBPROGRAM.
HTRANS NAME OF SUCH SUBPROGRAM,
H10UT NAME OF SUCH SUBPROGRAM.
STHDER NAME OF SUCH SUBPROGRAM.
TPFORM NAME OF SUCH SUBPROGRAM.

0. NOs OF SUBPROGRAMS W/0 COMMONs TO BE ENTRIES.

1 NO., OF SUBPROGe W/0 COMMONs 10 BE NON-ENTRIES.
AND NAME OF SUCH SUBPROGRAM.
*%¥EOF

* * * * *
STHB1S
FUNCTION
THIS MODULE IS A CONTINUATION OF STHBKS.

INPUT TO
SETGEN REMARKS
NODECK
PLANAL NAME OF SUBSYSTEM.
SIMPLE STRUCTURE OF LOAD MODULES
STHB1S NAME OF LOAD MODULE.

1 . NOe. OF SUBPROGRAMS WITH COMMONs TO BE ENTRIES.
STHB1S NAME OF SUCH SUBPROGRAM,

9 NO. OF SUBPROG. WITH COMMONs TO BE NON-ENTRIES.
DE2BUG NAME OF SUCH SUBPROGRAM,
DE3BUG NAME OF SUCH SUBPROGRAM.
HANGLE NAME OF SUCH SUBPROGRAM.

HATAN NAME OF SUCH SUBPROGRAM.
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HELEMT NAME OF SUCH SUBPROGRAM.

HNSTAN NAME OF SUCH SUBPROGRAM.

HNSTES NAME OF SUCH SUBPROGRAM,

H20UT NAME OF SUCH SUBPROGRAM.

H30UT NAME OF SUCH SUBPROGRAM.

0 NO. OF SUBPROGRAMS W/0 COMMONs TO BE ENTRIES.
0 NOs OF SUBPROGe W/0O COMMONs TO BE NON=-ENTRIES,
**EOF

#* * #* 3# *
STHGEN
FUNCTION

THIS MODULE GENERATES THE LOCAL COEFFICIENT MATRICES
(STIFFNESS/FLEXIBILITY MATRICES) BEFORE THE MATRIX FOR THE
ENTIRE SYSTEM IS ASSEMBLED.

INPUT TO

SETGEN REMARKS

NODECK
PLANAL NAME OF SUBSYSTEM.

SIMPLE STRUCTURE OF LOAD MODULESs

STHGEN NAME OF LOAD MODULE.

2 NOs OF SUBPROGRAMS WITH COMMONs TO BE ENTRIES,
STHGEN NAME OF SUCH SUBPROGRAM.
STHSEP NAME OF SUCH SUBPROGRAM.

2 NO. OF SUBPROG. WITH COMMONs TO BE NON-ENTRIES.
HDUAL NAME OF SUCH SUBPROGRAMe.

STHESM NAME OF SUCH SUBPROGRAM.

o) NOe. OF SUBPROGRAMS W/0 COMMONs TO BE ENTRIES,
0 NO. OF SUBPROGe. W/0O COMMONs 10 BE NON-ENIRIES.
*¥*EOF '

%* * * * *

STHINI
FUNCTION

THIS MODULE CONTAINS THE SUBPROGRAMS THAT INITIALIZE
THE PLANAL SYSTEM.

INPUT TO

SETGEN REMARKS

NODECK

PLANAL NAME OF SUBSYSTEM.

SIMPLE STRUCTURE OF LOAD MODULE.




171

STHINI NAME OF LOAD MODULE.

6 NO. OF SUBPROGRAMS WITH COMMONs 70O BE ENTRIES.
STHINI NAME OF SUCH SUBPROGRAM.
STHBOU NAME OF SUCH SUBPROGRAM.
STHLOD NAME OF SUCH SUBPROGRAM.
STHOUT NAME OF SUCH SUBPROGRAM.
STHTCE NAME OF SUCH SUBPROGRAM.
STHTRA NAME OF SUCH SUBPROGRAMe
2 NOs OF SUBPROGe. WIIH COMMONs 10 BE NON-ENIRIES,
GETNOS NAME OF SUCH SUBPROGRAM.
HSTORE NAME OF SUCH SUBPROGRAM,
0 NO., OF SUBPROGRAMS W/0 COMMONs TO BE ENTRIES.
3 NO. OF SUBPROGe W/0 COMMONs TO BE NON-ENTRIES.
AND NAME OF SUCH SUBPROGRAM,
LCDBLE NAME OF SUCH SUBPROGRAM.
SETCLK - NAME OF SUCH SUBPROGRAM.
**¥EQOF
* * *® # *
STHMAL
FUNCTION

THIS MODULE CONTAINS THE SUBPROGRAM THAT IS THE fMAIN!
PROGRAM OF THE SYSTEM. EXECUTION OF OTHER LOAD MODULES IS
CONTROLLED BY THE *'MAIN' PROGRAM.

INPUT TO
SETGEN REMARKS
NCDECK
PLANAL NAME OF SUBSYSTEMe.
SIMPLE STRUCTURE OF LOAD MODULE,
STHMAT NAME OF LOAD MODULE.
1 NOs OF SUBPROGRAMS WITH COMMONs TO BE ENTRIES.
STHMAL NAME OF SUCH SUBPROGRAM.
8 NO. OF SUBPROGe WITH COMMONs TO BE NON~ENTRIESe
HATAN NAME OF SUCH SUBPROGRAM
HCLOCK NAME OF SUCH SUBPROGRAM.
HPSSLS NAME OF SUCH SUBPROGRAMe
NEXNOD NAME OF SUCH SUBPROGRAM.
STHCHK NAME OF SUCH SUBPROGRAM,
STHGRI NAME OF SUCH SUBPROGRAM,
STHRBD NAME OF SUCH SUBPROGRAM.
STHTMO NAME OF SUCH SUBPROGRAMe
0 NO. OF SUBPROGRAMS W/0O COMMONs TO BE ENTRIES,
2 NOo. OF SUBPROGe W/0O COMMONs TO BE NON-ENTRIES,
AND NAME OF SUCH SUBPROGRAM,
SETCLK NAME OF SUCH SUBPROGRAM,

*®EOF
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STHNAS

FUNCTION

THIS MODULE ASSEMBLES THE COEFFICIENT MATRIX (STIFF-
NESS/FLEXIBILITY MATRIX) OF THE GOVERNING SYSTEM OF SIMUL~
TANEOUS EQUATIONS WHEN THE MATRIX IS NON-SYMMETRIC, ‘

INPUT TO
SETGEN REMARKS
NODECK
PLANAL NAME OF SUBSYSTEM.
SIMPLE STRUCTURE OF LOAD MODULE.
STHNAS NAME OF LOAD MODULE.

1 NOs OF SUBPROGRAMS WITH COMMONs TO BE ENTRIES,
STHNAS NAME OF SUCH SUBPROGRAM.

2 NOe OF SUBPROGe WITH COMMONs TO BE NON-ENTRIESe
HNSASS NAME OF SUCH SUBPROGRAM,
HPOSTT NAME OF SUCH SUBPROGRAM,

0 NO. OF SUBPROGRAMS w/0 COMMONs 10 BE ENIRIES.

2 NOs OF SUBPROG. W/O COMMONs TO BE NON=-ENTRIES.
BITON NAME OF SUCH SUBPROGRAMe

SETCLK NAME OF SUCH SUBPROGRAMe
**EOF
¥* 3* * * *

STHNSL

FUNCTION

THIS MODULE SOLVES THE SYSTEM OF SIMULTANEOUS EQUATIONS
IN THE NON-SYMMETRIC CASE.

INPUT TO
SETGEN REMARKS
NODECK
PLANAL NAME OF SUBSYSTEMe
SIMPLE STRUCTURE OF LOAD MODULES.
STHNSL NAME OF LOAD MODULE.
1 NO. OF SUBPROGRAMS WITH COMMONs TO BE ENTRIES,
STHNSL NAME OF SUCH SUBPROGRAM.
9 NO., OF SUBPROGe. WITH COMMONs TO BE NON=~ENTRIES.
HDEBUG NAME OF SUCH SUBPROGRAM,.
HGAUBK NAME OF SUCH SUBPROGRAM.
HGAUSS NAME OF SUCH SUBPROGRAM.
HINTER NAME OF SUCH SUBPROGRAM.
HNSLAS NAME OF SUCH SUBPROGRAM,
HNSL SA ¢ NAME OF SUCH SUBPROGRAM.
MATMUL NAME OF SUCH SUBPROGRAM.

MATSUB NAME OF SUCH SUBPROGRAM.
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0 NOeo OF SUBPROGRAMS W/O COMMONs TO BE ENTRIES.
1 NO. OF SUBPROG. W/O COMMONs TO BE NON-ENTRIES.
SETCLK NAME OF SUCH SUBPROGRAM,
X*EOF
¥ * * ¥* *
STHPAR
FUNCTION

THIS MODULE PROCESSES THE INPUT OR CONSTRUCTION OF A
PARTICULAR SOLUTION IN THE BENDING PROBLEM.

INPUT TO

SETGEN REMARKS

NODECK

PLANAL NAME OF SUBSYSTEMe

SIMPLE STRUCTURE OF LOAD MODULE,

STHPAR NAME OF LOAD MODULE.

2 NOs OF SUBPROGRAMS WITH COMMONs TO BE ENTRIES.
STHPAR NAME OF SUCH SUBPROGRAM.

STHBPS NAME OF SUCH SUBPROGRAMe.

4 NOe OF SUBPROGe WITH COMMONs TO BE NON-ENTRIES.
HINTEG NAME OF SUCH SUBPROGRAM,

INTGRT NAME OF SUCH SUBPROGRAMs

INTPOL NAME OF SUCH SUBPROGRAM,.
NEXNOD NAME OF SUCH SUBPROGRAM,

0o NO. OF SUBPROGRAMS W/0O COMMONs TO BE ENTRIES.
2 NOo OF SUBPROGe W/0O COMMONs TO BE NON~-ENIRIES.
AND NAME OF SUCH SUBPROGRAMe.
LCDBLE NAME OF SUCH SUBPROGRAM.
**EOF
* 3* #* # *
STHP 1R
FUNCTION
THIS MODULE IS A CONTINUATION OF STHPAR.

INPUT TO
SETGEN REMARKS
NODECK
PLANAL NAME OF SUBSYSTEMe
SIMPLE STRUCTURE OF LOAD MODULE.
STHP1R NAME OF LOAD MODULE.

1 NOo, OF SUBPROGRAMS WITH COMMON, TO BE ENTRIES.
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STHP1R NAME OF SUCH SUBPROGRAM.
5 NOs OF SUBPROGe WITH COMMONs TO BE NON-ENTRIES.
HATAN NAME OF SUCH SUBPROGRAM.
HDISLD NAME OF SUCH SUBPROGRAM.
HOIST NAME OF SUCH SUBPROGRAM,
HTHETA NAME OF SUCH SUBPROGRAM.
NEXNOD NAME OF SUCH SUBPROGRAMe
0 NO. OF SUBPROGRAMS W/0O COMMONs TO BE ENTRIES.
1 NOes OF SUBPROGe W/0O COMMONs TO BE NON~ENTRIES.
AND NAME OF SUCH SUBPROGRAM.
**EQF
3* * * * *
STHSAS
FUNCTION

THIS MODULE TRANSFERS SUBMATRICES OF THE COEFFICIENT
MATRIX OF THE GOVERNING EQUATIONS TO LOCAL ARRAYSs AND VICE
VERSAs FOR EASE OF MODIFICATION.

INPUT TO
SETGEN REMARK S
NODECK
PLANAL NAME OF SUBSYSTEM.
SIMPLE STRUCTURE OF LOAD MODULE,
STHSAS NAME OF LOAD MODULE.
2 NOe OF SUBPROGRAMS WITH COMMONs TO BE ENTRIES.
STHSAS NAME OF SUCH SUBPROGRAM.
STHSSA NAME OF SUCH SUBPROGRAM.
0 NO. OF SUBPROGe. WITH COMMONs TO BE NON-ENTRIES.
o) NO. OF SUBPROGRAMS W/0 COMMONs TO BE ENTRIES.
1 NO., OF SUBPROGe W/0O COMMONs TO BE NON-ENTRIES.,
BITON NAME OF SUCH SUBPROGRAMe
*%¥EOF
¥* #* 3* * ¥*
STHSTR
FUNCTION

THIS MODULE CONTAINS THE DICTIONARY SUBPROGRAM IN PLATE
STRETCHING (STHSTR)s WHICH LEADS TO THE PROPER SUBPROGRAM IN
AN OVERLAY STRUCTURE THAT PROCESSES ONE OF THE BOUNDARY
CONDITIONS.

INPUT TO
SETGEN REMARKS




NODECK
PLANAL
OVERLAY
STHSTR
1
STHSTR
0
0
2.
AND
BITON
1
REGION 1
OVERLAY
SDISPL
1
SDISPL
0 ‘
OVERLAY
SEDGEB
2
SEDGEB
STIFED
0
OVERLAY
SELAST
1
SELAST
0
OVERLAY
SMIXED
2
SMIXED
ENDMIX
0
OVERLAY
SSTRES
1
SSTRES
0

BETA

BETA

BETA

BETA

BETA
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NAME OF SUBSYSTEM.

STRUCTURE OF LOAD MODULE.
NAME OF LOAD MODULE.

NOe. OF SUBPROGRAMS WITH COMMONS
NAME OF SUCH SUBPROGRAM.

NOe. OF SUBPROGe WITH COMMONs TO BE NON=-ENTRIES.
NOe OF SUBPROGRAMS W/0 COMMONs TO BE ENTRIES,
NO. OF SUBPROG. W/0O COMMONs TO BE NON-ENTRIES.
NAME OF SUCH SUBPROGRAM,

NAME OF SUCH SUBPROGRAM,

NO. OF REGIONS IN OVERLAY STRUCTURE.
INDICATES START OF REGION.

INDICATES START OF SEGMENT.

NAME OF THE ENTRY TO SEGMENT,.

NOe OF SUBPROGRAMS WITH COMMONe

NAME OF SUCH SUBPROGRAM.

NOe OF SUBPROGRAMS W/0O COMMONe.

INDICATES START OF SEGMENT.

NAME OF THE ENTRY TO SEGMENT.

NOe OF SUBPROGRAMS WITH COMMONe.

NAME OF SUCH SUBPROGRAM.

NAME OF SUCH SUBPROGRAM.

NC» OF SUBPROGRAMS W/0 COMMON.

INDICATES START OF SEGMENT,

NAME OF THE ENTRY TO SEGMENT.

NOs OF SUBPROGRAMS WITH COMMONe.

NAME OF SUCH SUBPROGRAM.

NO. OF SUBPROGRAMS W/0O COMMON.

INDICATES START OF SEGMENT.

NAME OF THE ENTRY TO SEGMENT.

NO. OF SUBPROGRAMS WITH COMMON.

NAME OF SUCH SUBPROGRAM,.

NAME OF SUCH SUBPROGRAM.

NO. OF SUBPROGRAMS W/0 COMMON.

INDICATES START OF SEGMENT.

NAME OF THE ENTRY TO SEGMENT.

NOes OF SUBPROGRAMS WITH COMMON.

NAME OF SUCH SUBPROGRAM.

NOe. OF SUBPROGRAMS W/0 COMMON.

TO BE ENTRIES,

END OF OVERLAY INDICATES END OF OVERLAY STRUCTURE.

*¥#EOF

STHSVR

FUNCTION

THIS MODULE SOLVES THE SYSTEM OF SIMULTANEOUS EQUATIONS

IN

THE SYMMETRIC CASEe.




INPUT TO
SETGFN

NODECK
PLANAL
SIMPLE
STHSVR
1
STHSVR
8
STADRS
STAD1S
STDCPY
STDMAD
STDMMP
STDMTR
STIVDP
SVRBUG
0
2
BITON
SETCLK
**EOF

STHS1R

FUNCTION
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REMARKS

NAME OF SUBSYSTEMe.

STRUCTURE OF LOAD MODULE,

NAME OF LOAD MODULE,

NOs OF SUBPROGRAMS WITH COMMON,s TO BE ENTRIES.,
NAME OF SUCH SUBPROGRAM.

NOs OF SUBPROGe WITH COMMONs TO BE NON-ENTRIES.
NAME OF SUCH SUBPROGRAMe.

NAME OF SUCH SUBPROGRAM.

NAME OF SUCH SUBPROGRAM.

NAME OF SUCH SUBPROGRAM.

NAME OF SUCH SUBPROGRAM.

NAME OF SUCH SUBPROGRAM.

NAME OF SUCH SUBPROGRAM.,

NAME OF SUCH SUBPROGRAM.

NOo OF SUBPROGRAMS W/0 COMMONs TO BE ENTRIES.
NO. OF SUBPROGe W/O COMMONs TO BE NON-ENTRIES.
NAME OF SUCH SUBPROGRAM.

NAME OF SUCH SUBPROGRAM,

THIS MODULE IS A CONTINUATION OF LOAD MODULE STHSTR.

INPUT TO
SETGEN

NODECK
PLANAL
SIMPLE
STHS1R
1
STHS1R
9
ENDSTN
HATAN
HCHECK
HINITL
HMODIF
HPHI
HROTAT
NEXNOD
STRAIN

REMARKS

NAME OF SUBSYSTEM.

STRUCTURE OF LOAD MODULE.

NAME OF LOAD MODULE,

NOo OF SUBPROGRAMS WITH COMMONs TO BE ENTRIES,
NAME OF SUCH SUBPROGRAM.

NOs OF SUBPROGe WITH COMMONs TO BE NON-ENTRIES.
NAME OF SUCH SUBPROGRAM.

NAME OF SUCH SUBPROGRAM.

NAME OF SUCH SUBPROGRAM.

NAME OF SUCH SUBPROGRAM.

NAME OF SUCH SUBPROGRAM.

NAME OF SUCH SUBPROGRAM.

NAME OF SUCH SUBPROGRAM.

NAME OF SUCH SUBPROGRAM,

NAME OF SUCH SUBPROGRAM.
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0 NOs OF SUBPROGRAMS W/0 COMMONs TO BE ENTRIES,
2 NOs OF SUBPROGe. W/O COMMONs TO BE NON-ENTRIEO.
AND NAME OF SUCH SUBPROGRAM,
BITON NAME OF SUCH SUBPROGRAM.
*%EOF
* * * * #*
STH1FS
FUNCTION

THIS MODULE PROCESSES THE CONSTRUCTION OF A PARTICULAR
SOLUTION IN THE BENDING PROBLEM BY SUMMATION OF A FOURIER
SERIES.

INPUT 7O
SETGEN REMARKS
NODECK
PLANAL NAME OF SUBSYSTEM.
SIMPLE STRUCTURE OF LOAD MODULE.
STH1FS NAME OF LOAD MODULE.
1 NOe OF SUBPROGRAMS WITH COMMON, TO BE ENTRIES,
STHI1FS NAME OF SUCH SUBPROGRAM.
7 NO. OF SUBPROGe WITH COMMONs TO BE NON=-ENTRIES
HSIGN NAME OF SUCH SUBPROGRAM.
NEXNOD NAME OF SUCH SUBPROGRAM.
STHCBC NAME OF SUCH SUBPROGRAMe.
STHCON NAME OF SUCH SUBPROGRAM.
STHZ2FS NAME OF SUCH SUBPROGRAMe
STH3FS NAME OF SUCH SUBPROGRAMe.
STH&4FS NAME OF SUCH SUBPROGRAM.
0 NCs. OF SUBPROGRAMS W/0 COMMONs TO BE ENTRIES.
1 NOe OF SUBPROGe W/0O COMMONs TO BE NON-ENTRIEO.
AND NAME OF SUCH SUBPROGRAM,

*%EOF




APPENDIX F

PROGRAM DOCUMENTATION

In this appendix is listed brief documentation for the subroutines
used in the PLANAL System. The names of a subroutine and the load
module in which it resides are listed with description. Internal logic,

linkage and calling sequence are indicated wherever appropriate. A

missing item means that the item needs no description or is missing.

Name:

Load Module:

Description:

Length:

Name:

Load Module:

Description

Logic:

Length:

AND.

Assembly language program used in STHBCM, STHBEN, STHBKS,
STHINI, STHMAI, STHPAR, STHP1R, STHSTR, STHSIR, STHIFS.
Program returns the 32 bits logical product of its two
arguments in general register O.

20 bytes.

BITON.

Assembly language program used in load modules STHNAS,
STHSAS, STHSTR, STHSVR, STHSIR.

BITON turns on bit N of WORD where N is counted from 1 to
32 left to right. BITOFF turns of bit N of WORD. IFBIT
returns 0 if bit N is off and 1 if it is on.

Forms of calling sequence:

(1) CALL BITON(WORD,N)

(2) CALL BITOFF(WORD,N)

(3) J = IFBIT(WORD,N)

where N = bit to be tested or changed in WORD.
WORD = full word in which a bit will be turned on or
off.
J = value of bit N in WORD.
136 bytes.

178




Name:

Load Module:
Description:

Length:
Called by:

Name:

Load Module:
Description:

Lenth:
Called by:

Name:

Load Module:
Description:

Length:
Called by:

Name:

Load Module:
Description:

Length
Calls:
Called by:

Name:

Load Module:
Description:

Length:
Calls:
Called by:

Name:

Load Module:
Description:

Length:
Calls:
Called by:
Message:
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DE1BUG.

STHBKS.

This subroutine prints out grid lines for differentiation
when requested.

1084 bytes.

STHBKS.

DE2BUG.

STHB1S.

Program to print the moments of the homogeneous, particular
and total problems at the nodes.

864 bytes.

STHB1S.

DE3BUG.

STHBI1S.

Program to print the moments of the homogeneous, particular
and total problems of the elements.

904 bytes.

STHBI1S.

ENDMIX.

STHSTR.

Program to treat the special condition at the ends of a
mixed boundary portion in stretching.

1912 bytes. ,

AND.

SMIXED.

ENDSTN.

STHSTR.

Program to process ends of a boundary portion with strain
boundary condition.

1644 bytes.

AND.

STRAN.

GETNOS .

STHINI.

Program to trace the external numbers of nodes along a
boundary portion.

1804 bytes.

LCDBLE.

STHBOU.
Error messages issued when boundaries or nodes are not

previously defined.




Name:

Load Module:
Description:

Length:
Called by:

Name:

Load Module:
Description:

Logic:

Length:
Called by:

Name:

Load Module:
Description:

Length:
Calls:
Called by

Name:

Load Module:
Description:

Length:
Calls:
Called by:

Name:

Load Module:
Description:

Length:
Calls:
Called by:

Name:

Load Module:
Description:

Length:
Called by:

Name:

Load Module:
Description:

Length:
Calls:
Called by:
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HANGLE.

STHB1S.

Program converts an angle given in radians to one in
degrees, minutes, and seconds.

592 bytes.

H20UT.

HATAN.

STHBCM, STHBEN, STHB1S, STHPIR.

Program computes the arctangent of an angle.

For a point with given abscissa and ordinate, the arctangent
of the angle swept from the positive x-axis to the point

is computed. The range of the angle is from zero to 2.

640 bytes.

HNSTES, HELEMT, HNSTAN, STHRBD, HDHI, HTHETA.

HCHECK.

STHS1R.

Program to check whether a rigid body displacement has
been specified in strain boundary condition.

1560 bytes.

AND, NEXNOD

STRAIN.

" HCLOCK.

STHMAI. ,
Program for timing the various operations.
720 bytes.

SETCLK.

STHMAI.

HCODE.

STHBKS.

Program to compute control parameters for selective output.
972 bytes.

AND.

STHBKS.

HDEBUG.

STHNSL.

Program to print out ICUINT when requested.
1088 bytes.

HDEB1G, HGAUSS.

HDEB1G.

STHNSL.

Program to print FCMAT.
924 bytes.

HDEBUG, HDEBZ2G.

HGAUSS.




Name:

Load Module:
Description:
Length:
Called by:

Name:
Load Module:
Description:

Length:
Calls:
Called by:

Name:

Load Module:
Description:
Length:
Called by:

Name:

Load Modules:

Description:

Length:
Called by:

Name:
Load Module:
Description:

Logic:

Length:
Calls:
Called by:

Name :
Load Module:
Description:

Length:
Calls:
Called by:
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HDEB2G.

STHNSL.

Program to print KPPRI.
652 bytes.

HDEB1G, HGAUBK.

HDISLD.

STHP1R.

Program to distribute load between strips parallel to the
axes in computing particular solution functions.

3144 bytes.

HDIST.

STHPIR.

HDIST.

STHP1R.

Program to compute distances to boundary.
608 bytes.

HDISLD.

HDUAL.

STHGEN.

Program to perform the duality coversion of material
properties for the bending problem.

620 bytes. -

STHESM.

HELEMT.

STHBI1S.

Program to compute strains (moments), stresses (curvatures),
and their principal values at the elements.

The strain of an element is computed from displacements of
the nodes. Stresses are then computed from stress-strain
relations.

4108 bytes.

HATAN.

HELEMT.

HGAUBK.

STHNSL.

Program to perform back-substitution for unknowns after
Gauss reduction of the non-symmetric system equations.
1608 bytes.

HNSLSA, MATMUL, MATSUB, HDEB2G.

STHNSL.
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HGAUSS.

STHNSL.

Program to perform Gauss reduction of the non-symmetric

system equations.

2212 bytes.

QQEBUG, HNSLSA, HINTER, MATMUL, HNSLAS, MATSUB, HDEB1G.
HNSL..

HINITL.

STHS1TR.

Program initializes a row of coefficient matrix for
modification.

984 bytes.

BITOFF, NEXNOD.

STRAIN.

HINTEG.

STHPAR.

Executive program for integration of function along a
grid line.

2996 bytes.

INTGRT, INTPOL.

- HINTER.

STHNSL. ,

Program to perform interchange of hyper-rows when deter-
minant of diagonal submatrix is zero in Gauss reduction of
non-symmetric system equations.

1376 bytes.

HNSLSA.

HGAUSS.

HMODIF.

STHS1IR.

Program to perform modifications in strain boundary condi-
tion. ‘

1404 bytes.

STHSSA.

STRAIN.

HNSASS.

STHNAS .

Program to manage repeated operation of assemblage and
updating of record.

1480 bytes.

BITON, HPOSIT.

STHNAS.
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HNSLAS.

STHNSL.

Program to transfer temporary submatrix to element of
non-symmetric global coefficient matrix.

816 bytes.

HGAUSS.

HNSLSA.

STHNSL.

Program to transfer element of non-symmetric global
coefficient matrix to temporary submatrix.

708 bytes.

HINTER, HGAUBK, HGAUSS.

HNSTAN.

STHB1S.

This program computes the strains (moments) and their
principal values at the nodes.

Strains are computed by derivatives of the displacements.
2108 bytes.

HATAN.

STHB1K.

HNSTES.

STHB1S. :

This program computes the stresses (curvatures) and their
principal values at the nodes.

Stresses are computed from the strains through stress-
strain relations.

2380 bytes.

HATAN.

STHBI1S.

HPHI.

STHBCM, STHBEN, STHSIR.

Program to compute the direction of the outward normal
at a node.

708 bytes.

HATAN.

STHBLV, STHBDI, STRAIN.

~HPOSIT.

STHNAS.

Program to compute position of bit in structure of IRELI.
420 bytes.

HNSASS.
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HPSSLS.

STHMAI.

Program to process simple support and line of symmetry
boundary conditions in bending.

It constructs the BDNORM array around the boundary.
it sets the boundary values for the two conditions.
2472 bytes. .

HATAN, AND, NEXNOD.

STHMAI.

Then

HROTAT.

STHSTR.

Program to match the node with prescribed rotation.
684 bytes.

STRAIN.

HSIGN.

STHIFS.

Function to compute (-1)**M.
412 bytes.

STHAFS.

. HSTORE.

STHINI.

Program stores the boundary values to the negative and
positive sides of a boundary node.

1940 bytes.

AND.

STHBOU.

HTHETA.

STHPIR.

Program to compute the acute angle between the x-axis and
normal to a Tine segment.

660 bytes.

HATAN.

STHP1R.

HTRANS.

STHBKS.

It transfers results after solving the system equations to
array NODISP. It also transforms NODISP, wherever appli-
cable, to global axes.

For nodes with truly mixed boundary condition, displacements
have to be transformed to global axes by premultiplying
them by the original rotation matrix transposed.

1528 bytes.

STHBKS.
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H10UT.

STHBKS.

Program to print nodal displacements (stress functions)
when requested

Nodal displacements or stress functions.

856 bytes.

AND.

STHBKS.

H20UT.

STHBITS.

Program to print the strains (moments), stresses
(curvaturesg, and/or their principal values at the nodes.
3688 bytes.

HANGLE.

STHBI1S.

H30UT.

STHB1S. :

Program to print the strains (moments), stresses
(curvaturesg, and/or their principal values of the elements.
3548 bytes.

HANGLE.

STHBI1S.

INTGRT.

STHPAR.

Program to perform numerical integration for PBNTEM.
876 bytes.

HINTEG.

INTPOL.

STHPAR.

Program to perform interpolation of ordinates.
1072 bytes.

HINTEG.

LCDBLE.

Utility program used in load modules STHBCM, STHINI, STHPAR.
This function performs a logical comparison of two double
precision arguments and returns as a code:

0 if arguments are logically equivalent.

1 if first argument is logically less than the second.

2 if first argument is logically greater than the second.

60 bytes.

MATMUL.

STHNSL.

Program to perform matrix multiplication.
508 bytes.

HGAUBK, HGAUSS.
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MATSUB.

STHNSL.

Program to perform matrix subtraction.
440 bytes.

HGAUBK, HGAUSS.

NEXNOD.

STHBCM, STHBEN, STHS1R, STHPAR, STHP1R, STH1FS.

Function to compute the next node along a boundary position
in either a positive or negative s-direction.

480 bytes.

STHBLV, STHBDI, STHFFB, STHSLB, STRAIN, STHBPS, STHPIR,
STHCON.

SDISPL.

STHSTR.

Program to process displacement boundary condition in
stretching.

3780 bytes.

AND, BITON.

STHSTR.

"Inconsistent displacement values at node."

SEDGEB.

STHSTR. '

Program to process edge beam boundary in stretching.
4100 bytes.

STHSAS, STHSSA.

STIFED, AND.

STHSTR.

SELAST.

STHSTR.

Program to process elastic boundary condition in stretching.
4396 bytes.

STHSAS, STHSSA.

AND.

STHSTR.

“Inconsistently prescribed support displacements at node."

SETCLK.

Assembly language program used in load modules STHINI,
STHMAI, STHNAS, STHNSL, STHSVR.

The entry point SETCLK initializes timing calls. The
entry point GETCLK returns the elapsed time, in hundredths
of a second, since the last call to SETCLK.

30 bytes.
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SMIXED.

STHSTR.

Program to process mixed boundary condition in stretching.
6208 bytes.

STHSAS, STHSSA.

AND, ENDMIX.

STHSTR.

Error messages will be issued when displacement components
and angles at nodes are not specified consistently.

SSTRES.

STHSTR.

Program to process stress boundary condition in stretching.
2436 bytes.

AND.

STHSTR.

STHASS.

STHASS. :

Executive program for assembly of the symmetric global
coefficient matrix.

3834 bytes.

STHMAI.

SETCLK, STORSU, STADRS, STDCPY, STDMAD.

STHAVG.

STHBCM.

Program to compute average angle in MIXED BENDING boundary
condition.

In bending problems, MIXED BENDING boundary is constructed
internally for simple support and line of symmetry boundary
conditions. It checks if there is any disagreement in
direction for stress function at a node. The average
direction 1is taken.

1068 bytes.

AND.

STHBCM.

STHBCM.

STHBCM.

Executive program in modification for boundary conditions
and computation of Toad vector in system equations.

It determines whether current problem is stretching

or bending. Then it calls appropriate program to
construct Toad vector in system equations. It checks
for any node with unspecified boundary condition. It
then Tloops on all the boundaries by calling a dictionT
ary program. For bending problem, some boundary condi-
tions are processed under dual routines in stretching.
3748 bytes.

STHBEN, STHSTR.

STHMAI .
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AND, STHBLV, STHSLV, STHAVG.

Error messages are printed when:

1. boundary conditions for some portion of a boundary are
not specified,

2. instability due to boundary conditions is detected (less
than three displacement components specified in stretching,
or less than three stress function components specified

in bending).

STHBDI.

STHBEN.

This program processes the displacement boundary condition
in bending.

2172 bytes.

AND, HPHI, NEXNOD.

STHBEN.

STHBEN.

STHBEN.

Dictionary program for boundary conditions in bending.
From the code for boundary conditions, the appropriate
routine is called.

- 1272 bytes.

STHBDI, STHSLB, STHFFB.

STHBKS.

STHBKS.

Executive program for backsubstitution and output of
results.

1552 bytes.

STHB1S.

STHMAI.

H10UT, HCODE, HTRANS, DE1BUG, STHDER.

STHBLYV.

STHBCM.

Program to assemble the generalized nodal rotation vector
for the bending problem.

Nodal rotations are computed from the particular solution
functions. A number of computation routines are used.
4596 bytes.

HPHI, NEXNOD.

STHBCM.

STHBOU.

STHINI.

Boundary values are stored by program into BDCOND according
to boundary condition involved.

3200 bytes.

GETNOS, HSTORE.
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STHBPS.

STHPAR.

Executive program to compute particular solution function
by double integration.

6416 bytes.

STHPIR.

AND, HINTEG, NEXNOD.

STHB1S.

STHB1S.

It is a continuation of STHBKS. It is the executive pro-
gram for computing the strains and stresses of the nodes
and elements.

1032 bytes.

STHBKS.

H20UT, H30UT, HNSTAN, HNSTES, DE2BUG, HELEMT, DE3BUG.

STHCBC.

STHITFS.

Program to modify boundary conditions of plate under con-
centrated load applied at center.

2108 bytes.

AND.

STHCON.

STHCHK.

STHMAI.

Program to check
input.

It constructs JEXT, JINT when no error is detected.
2224 bytes.

AND.

STHMAI.

loading and status of each node after

STHCON.

STHTFS.

Executive program for modifying boundary conditions of
plate under concentrated load applied at center.

2228 bytes.

AND, STHCBC, NEXNOD.

STH1FS.

STHDER.

STHBKS.

Program to compute at each node derivatives of the solved
unknowns of the system equations.

Computation is carried out by three-point formulas or
divided differences, processed along grid lines parallel
to the global axes.

2232 bytes.

TPFORM.

STHBKS.
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STHESM.

STHGEN.

Program to compute the diagonal and lower half of the
element local coefficient matrices. For the bending ,
problem, it calls HDUAL to perform the duality conversion
of material properties.

1216 bytes.

HDUAL.

STHGEN.

STHFFB.

STHBEN.

This program processes the fixed support or free boundary
conditions in bending.

The equivalent displacement or stress boundary conditions
are specified.

1232 bytes.

AND, NEXNOD.

STHBEN.

STHGEN.
STHGEN.

. Executive program for generation of local coefficient

matrices of elements.
necessary.

3656 bytes.

STHMAI.

STHESM.

Error messages issued when:
1. element not of type 'CST'.
2. element of zero thickness.

It also constructs NDPROP when

STHGRI.

STHMAI.

Program constructs the rectangular grid pattern of the
nodes for differentiations of the final variables.

The grid pattern is formed as Tines parallel to the axes
by comparing nodal coordinates.

1848 bytes.

STHMAI.

STHINI.

STHINI.

Program to initialize BDID, BDCOND, and IPROB.

780 bytes.

“Command valid only for plate stretching and bending."
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STHLOD

STHINI.

Program inputs external Toading to the system.
Routines are written for load intensity and forces for
uniform and non-uniform cases.

2984 bytes.

LCDBLE.

STHMAIL.

STHMAI. *

The main program of the PLANAL System.

Depending on the symmetry of the coefficient matrix, the
proper assembler and solver are called. Programs for
constructing particular solution functions in bending and
routines for temporary output are also controlled.

3484 bytes.

STHNAS, STHNSL, STHASS, STHSVR, STHGEN, STHBKS, STHBCM,
STHIFS.

HPSSLS, STHRBD, HCLOCK, STHCHK, STHGRI, STHTMO.

STHNAS.

STHNAS.

Program to assemble the non-symmetric global coefficient
matrix. _

1740 bytes.

STHMAI.

SETCLK, HNSASS.

STHNSL.

STHNSL.

Program to prepare for so ution of non-symmetric system
equations.

1428 bytes.

STHMAT.

SETCLK, HGAUSS, HGAUBK.

STHOUT.

STHINI.

Program transfers information from Command 'OUTPUT'
to KODOUT.

656 bytes.

STHPAR.

STHPAR.

Program to store input of particular solution functions in
bending.

1912 bytes.

LCDBLE.
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STHPIR.

STHPIR.

Program to prepare for STHBPS by determ1n1ng types of end
conditions of all grid lines.

4360 bytes.

STHBPS.

AND, NEXNOD, HTHETA, HDISLD.

STHRBD.

STHMAI.

This program checks if a quantity in bending dual of a
rigid body displacement has been supplied. If not, one
would be specified.

When a1l boundary nodes are free or fixed, two stress
functions and one "rotation" will be specified. When
there is simple support or line of symmetry but there is
no node with constructed function boundary condition,
two stress functions are specified.

3244 bytes.

AND, HATAN, NEXNOD.

STHMAI.

. STHSAS.

STHSAS.

Program to transfer temporary submatrix to element of
global matrix.

1520 bytes.

SMIXED, SEDGEB, SELAST, STRAIN.

BITON.

STHSEP.

STHGEN.

Program to store element properties.
1344 bytes.

STHSLB.

STHBEN.

This program processes the simple or 1line of symmetry
boundary conditions in bending.

The equivalent mixed bending boundary condition is specified.
1536 bytes. .
AND, NEXNOD.
STHBEN.

STHSLV.

STHBCM.

Program to assemble the generalized Toad vector for the
stretching problem.

Load vector is computed from the externally applied loads.
1872 bytes.

AND

STHBCM.
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STHSSA.

STHSAS.

Program to transfer element of global matrix to temporary
submatrix.

1352 bytes.

SMIXED, SEDGEB, SELAST, HMODIF, STRAIN.

BITON.

STHSTR.

STHSTR.

Dictionary program to branch to the appropriate program
for processing the stretching boundary conditions.

956 bytes.

STHSIR.

STHBCM.

SDISPL, SSTRESS, SELAST, SEDGEB, SMIXED.

STHSVR.

STHSVR.

Executive program to solve the symmetric system equations.
7588 bytes.

STHMAI.

SETCLK, STDCPY, STIVDP, STADRS, STDMMP, STDMTR, STDMAD,
SVRBUG.

STHS1R.

STHSIR.

Continuation program of STHSTR.
528 bytes.

STHSTR.

STRAIN.

STHTCE.

STHINI.

Program traces the chain of boundary nodes in the positive
s-direction.

The chain is formed by examining the nodes following a
current boundary node around all elements incident on that
node.

3892.

AND, SETCLK, LCDBLE.

Error messages are issued when boundary chain cannot be
formed because of input errors.

STHTMO.

STHMAI.

Program to make intermediate output of arrays when re-
quested.

5120 bytes.

STHMAI.
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STHTRA.

STHINI.

Program transforms an integer from integer format to
alphameric format.

Integer is converted digit by digit.

1048 bytes.

STHTFS.

STHIFS.

Program to check input of geometry and loading before
construction of particular solution functions by Fourier
series.

5956 bytes.

STHMAI.

AND, STHCON, STH2FS.

STH2FS.

STHIFS.

Executive program for construction of particular solut1on
functions by Fourier series.

4984 bytes.

AND, STHBFS

- STHTFS.

STH3FS.

STH1Fs.

Program to perform actual summation of Fourier series.
4316 bytes.

STH4FS.

STH2Fs.

STH4FS.

STHIFS.

Program to compute the coefficients for summation by
Fourier series.

2076 bytes.

HSIGN.

STHBFS.

STIFED.

STHSTR.

Program to compute the local stiffness coefficients for
edge beam in stretching.

1524 bytes.

SEDGEB.

STRAIN.

STHS1R.

Program to process the strain boundary condition in bending.
6252 bytes.

STHSAS, STHSSA.

AND, HPHI, NEXNOD, HCHECK, HROTAT, HMODIF, HINITL, ENDSTN.
STHS1R.
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SVRBUG.

STHSVR.

Program to point out KPPRI during iterations in Gauss
reduction of symmetric system equations.

652 bytes.

STHSVR.

TPFORM.

STHBKS.

Program to compute derivatives by a three-point formula.
The formula used is selected by code in argument list.
848 bytes.

STHDER.




APPENDIX G

PROGRAM LISTINGS

Complete Listings of the Command Definition Blocks
and Icetran programs used in the PLANAL System may be
obtained upon request.

196






